Answer: 30.34m/s
Explanation:
The sum of forces in the y direction 0 = N cos 28 - μN sin28 - mg
Sum of forces in the x direction
mv²/r = N sin 28 + μN cos 28
mv²/r = N(sin 28 + μcos 28)
Thus,
mv²/r = mg [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/r = g [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/36 = 9.8 [(0.4695 + 0.87*0.8829) - (0.8829 - 0.87*0.4695)]
v²/36 = 9.8 [(0.4695 + 0.7681) / (0.8829 - 0.4085)]
v²/36 = 9.8 (1.2376/0.4744)
v²/36 = 9.8 * 2.6088
v²/36 = 25.57
v² = 920.52
v = 30.34m/s
The answer is probably light years if your looking for something specific it could also be an Astronomical unit or Distance unit but mainly look for LIGHT YEARS
Electricity<span> is </span>measured<span> in </span>units<span> of power called Watts</span>
No. What most people call 'terminal velocity' is the speed of the falling
object when the downward force of gravity is equal to the upward force
of air resistance. At that speed, the vertical forces on the object are
balanced, so it stops accelerating, and falls at a constant speed.
If there were no atmosphere, there would be no upward force due to
air resistance. The falling object would continue to accelerate all the
way down until it went 'splat'.
This is exactly the situation for meteoroids or asteroids falling onto the Moon.
Explanation:
Igneous rocks are formed by melting and cooling of magma originated from volcanic process.
when molten rock (rock liquefied by intense heat and pressure) cools to a solid state. Lava is molten rock flowing out of fissures or vents at volcanic centres (when cooled they form rocks such as basalt, rhyolite, or obsidian)
These rocks are strong, crystalline and dark in colour.