Answer:
The slower the intended velocity, the closer the force expressed comes to equalling the linear inertia of the load (i.e. the amount of force needed to hold the weight motionless). From Equation 1, force is inversely proportional to time
Answer:
the answer is c
Explanation:
because if the force of gravity increases its not gonna change its weight it will just float
Think about the formula for potential energy. (Surely you remember it):
Potential energy = (mass) x (acceleration of gravity) x (height)
-- The mass on the end of the pendulum doesn't change.
-- The acceleration of gravity doesn't change.
-- The only thing that changes is the height of the mass on the end.
So the potential energy is lowest when its height is the lowest.
That's position <em>B </em>.
Answer:
(a) 5.7 s
(b) 39 m/s
Explanation:
(a) u = 18 m/s
At the maximum height, the final velocity of ball is zero. lte teh time taken by the ball to go from 50 m height to maximum height is t.
use first equation of motion.
v = u + g t
0 = 18 - 10 x t
t = 1.8 s
Let the maximum height attained by the ball when it thrown from 50 m height is h'.
Use third equation of motion
v^2 = u^2 + 2 g h'
0 = 18^2 - 2 x 10 x h'
h' = 16.2 m
Total height from the ground H = h + h' = 50 + 16.2 = 76.2 m
Let t' be the time taken by the ball to hit the ground as it falls from maximum height.
use third equation of motion
H = ut + 1/2 x g t'^2
76.2 = 0 + 1/2 x 10 x t'^2
t' = 3.9 s
Total time taken by the ball to hit the ground = T = t + t' = 1.8 + 3.9 = 5.7 s
(b) Let v be the velocity with which the ball strikes the ground.
v^2 = u^2 + 2 g H
v^2 = 0 + 2 x 10 x 76.2
v = 39 m/s
<h2>
FAULT</h2>
The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts. The fault labeled 'E' cuts through all three sedimentary rock layers (A, B, and C) and also cuts through the intrusion (D). So the fault must be the youngest formation that is seen.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em>