Solve:
"<span>twice the number minus three times the reciprocal of the number is equal to 1."
3(1)
Let the number be n. Then 2n - ------- = 1
n
Mult all 3 terms by n to elim. the fractions:
2n^2 - 3 = n. Rearranging this, we get 2n^2 - n - 3 = 0.
We need to find the roots (zeros or solutions) of this quadratic equation.
Here a=2, b= -1 and c= -3. Let's find the discriminant b^2-4ac first:
disc. = (-1)^2 - 4(2)(-3) = 1 + 24 = 25.
That's good, because 25 is a perfect square.
-(-1) plus or minus 5 1 plus or minus 5
Then x = ------------------------------ = --------------------------
2(2) 4
x could be 6/4 = 3/2, or -5/4.
You must check both answers in the original equation. If the equation is true for one or the other or for both, then you have found one or more solutions.</span>
Answer:
3,750 cars.
Step-by-step explanation:
We are given that the equation:

Models the relationsip between <em>y</em>, the number of unfilled seats in the stadium, and <em>x</em>, the number of cars in the parking lot.
We want to determine the number of cars in the parking lot when there are no unfilled seats in the stadium.
When there are no unfilled seats in the stadium, <em>y</em> = 0. Thus:

Solve for <em>x</em>. Subtract 9000 from both sides:

Divide both sides by -2.4:

So, there will be 3,750 cars in the parking lot when there are no unfilled seats in the stadium.
Answer:
diagram pls
then I can answer this question