<span>C2Br2
First, we need to determine how many moles of the gas we have. For that, we'll use the Ideal Gas Law which is
PV = nRT
where
P = pressure (1.10 atm = 111458 Pa)
V = volume (10.0 ml = 0.0000100 m^3)
n = number of moles
R = Ideal gas constant (8.3144598 (m^3 Pa)/(K mol) )
T = Absolute temperature
Solving for n, we get
PV/(RT) = n
Now substituting our known values into the formula.
(111458 Pa * 0.0000100 m^3) / (288.5 K * 8.3144598 (m^3 Pa)/(K mol))
= (1.11458/2398.721652) mol
= 0.000464656 mol
Now let's calculate the empirical formula for this compound.
Atomic weight carbon = 12.0107
Atomic weight bromine = 79.904
Relative moles carbon = 13.068 / 12.0107 = 1.08802984
Relative moles bromine = 86.932 / 79.904 = 1.087955547
So the relative number of atoms of the two elements is
1.08802984 : 1.087955547
After dividing all numbers by the smallest, the ratio becomes
1.000068287 : 1
Which is close enough to 1:1 for me to consider the empirical formula to be CBr
Now calculate the molar mass of CBr
12.0107 + 79.904 = 91.9147
Finally, let's determine if the compound is actually CBr, or something like C2Br2, or some other multiple. Using the molar mass of CBr, multiply by the number of moles and see if the result matches the mass of the gas. So
91.9147 g/mol * 0.000464656 mol = 0.042708701 g
0.0427087 g is a lot smaller than 0.08541 g. So the compound isn't exactly CBr. Let's divide them to see what the factor is.
0.08541 / 0.0427087 = 1.99982673
1.99982673 is close enough to 2 to within the number of significant digits we have for me to claim that the formula for the unknown gas isn't CBr, but instead is C2Br2.</span>
<span>Helium = 1
Carbon = 8
Nitrogen = 8
Strontium = 52
Tellurium = 71
If you look on a periodic table, on each element there is a number on
the top left. This represents the number of protons in an atom. Protons
have a mass of 1 (in relative to Carbon-13)
If we take nitrogen-15 for example; The number 15 tells you that the
isotope has a mass of 15. Now if you look on the periodic table,
Nitrogen has a proton number of 7. Only protons and neutrons have a
mass, electrons are considered to be negligable. Therefore the number of
neutrons Nitrogen-15 contains is 15 - 7 = 8 </span>
Answer:
CCl4 - Nonpolar
CH3OH - polar
NH3 - polar
CS2 - Nonpolar
Explanation:
One important thing that we should know is that polarity has to do with the presence of a resultant dipole moment in a molecule.
Dipole moment is a vector quantity, This means that its direction is also taken into account when discussing the dipole moment of molecules.
Hence, symmetrical molecules such as CS2 and CCl4 are non-polar even though they have polar bonds because their dipoles cancel out(zero resultant dipole moment).
On the other hand, NH3 and CH3OH are non-symmetrical molecules hence they possess an overall dipole moment and are polar molecules.
I really don’t know but
Phosphorus pentoxide is a white solid which does not have any distinct odour. The chemical formula of this compound is P4O10. However, it is named after its empirical formula, which is P2O5. The molar mass of phosphorus pentoxide corresponds to 283.9 g/mol.