Answer:
40.7 kJ
Step-by-step explanation:
The formula for the heat, q, needed to evaporate a liquid is
q = mΔHvap
<em>Data: </em>
m = 180 g
ΔHvap = 2260 J/g
<em>Calculation:
</em>
q = 180 g × 2260 /1
q = 40 700 J = 40.7 kJ
Answer:
54.7°C is the new temperature
Explanation:
We combine the Ideal Gases Law equation to solve this.
P . V = n. R. T
As moles the balloon does not change and R is a constant, we can think this relation between the two situations:
P₁ . V₁ / T₁ = P₂ . V₂ / T₂
T° is absolute temperature (T°C + 273)
68.7°C + 273 = 341.7K
(0.987 atm . 564L) / 341.7K = (0.852 atm . 625L) / T₂
1.63 atm.L/K = 532.5 atm.L / T₂
T₂ = 532.5 atm.L / 1.63 K/atm.L → 326.7K
T° in C = T°K - 273 → 326.7K + 273 = 54.7°C
Answer:
CuSO4 + 2NaOH → Cu(OH)2 + Na2SO4
Explanation:
Answer:
Explanation:
Not Many
1 mol of CO has a mass of
C = 12
O = 16
1 mol = 28 grams.
1 mol of molecules = 6.02 * 10^23
x mol of molecules = 3.14 * 10^15 Cross multiply
6.02*10^23 x = 1 * 3.14 * 10^15 Divide by 6.02*10^23
x = 3.14*10^15 / 6.02*10^23
x = 0.000000005 mols
x = 5*10^-9
1 mol of CO has a mass of 28
5*10^-9 mol of CO has a mass of x Cross Multiply
x = 5 * 10^-9 * 28
x = 1.46 * 10^-7 grams
Answer: there are 1.46 * 10-7 grams of CO if only 3.14 * 10^15 molecules are in the sample