Complete Question
The complete question is shown on the first uploaded image
Answer:
The distance which the car skid is ![l = \frac{v_i^2 }{2 * \mu_k * g }](https://tex.z-dn.net/?f=l%20%20%3D%20%20%5Cfrac%7Bv_i%5E2%20%7D%7B2%20%2A%20%20%5Cmu_k%20%20%2A%20g%20%7D)
Explanation:
From the question we are told that
The initial velocity of the car is ![v_i](https://tex.z-dn.net/?f=v_i)
The coefficient of kinetic friction is ![\mu_k](https://tex.z-dn.net/?f=%5Cmu_k)
According to the law of energy conservation
The initial Mechanical Energy = The final Mechanical Energy
The initial mechanical energy is mathematically represented as
![M_i = KE _o + PE_e](https://tex.z-dn.net/?f=M_i%20%20%3D%20%20KE%20_o%20%20%2B%20PE_e)
where KE is the initial kinetic energy which is mathematically represented as
![KE = \frac{1}{2} m v_i^2](https://tex.z-dn.net/?f=KE%20%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20m%20v_i%5E2)
And PE is the initial potential energy which is zero given that the car is on the ground
Now
![M_f = W_{\mu}](https://tex.z-dn.net/?f=M_f%20%3D%20%20W_%7B%5Cmu%7D)
Where
is the work which friction exerted on the car which is mathematically represented as
![W_{\mu} = m* \mu_k * g * l](https://tex.z-dn.net/?f=W_%7B%5Cmu%7D%20%3D%20%20m%2A%20%20%5Cmu_k%20%20%2A%20%20g%20%20%2A%20%20l)
Where
is the distance covered by the car before it slowed down
![\frac{1}{2} m v_i^2 = m* \mu_k * g * l](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20m%20v_i%5E2%20%20%3D%20m%2A%20%20%5Cmu_k%20%20%2A%20%20g%20%2A%20l)
=> ![l = \frac{v_i^2 }{2 * \mu_k * g }](https://tex.z-dn.net/?f=l%20%20%3D%20%20%5Cfrac%7Bv_i%5E2%20%7D%7B2%20%2A%20%20%5Cmu_k%20%20%2A%20g%20%7D)