E=kq/r^2
q=(E*r^2)/k
q=(.086N/C)(1.7m^2)/(8.99*10^9N*m^2/C^2)
q=2.76*10^-11 C
q=2.8*10^-11 C
Answer:
hi iam 8 and a girl your hot
Explanation:
Answer:
V = 3.6385 m/s
θ = 47.46 degrees
Explanation:
the important data in the question is:
Skater 1:
= 39.6 kg
direction: south (axis y)
= 6.21 m/s
Skater 2:
= 52.1 kg
direction: east (axis x)
= 4.33 m/s
Now using the law of the conservation of linear momentum (
and knowing that the collision is inelastic we can do the next equations:
(eq. 1)
(eq. 2)
Where
and
is the velocity of the sistem in x and y after the collision.
Note: the conservation of the linear momentum have to be make once by each axis.
Now, in the (eq. 1) the skater 1 don't have velocity in the axis x, so we can replace
by 0 in the equation and get:
(eq. 1)
also, in the (eq. 2) the skater 2 don't have velocity in the axis y, so we can replace
by 0 in the equation and get:
(eq. 2)
Now, we just replace the data in both equations:
(eq. 1)
(eq. 2)
solving for
and
we have:
= 2.46 m/s
= 2.681 m/s
using the pythagoras theorem we can find the magnitude of the velocity as:
V = 
V = 3.6385 m/s
For find the direction we just need to do this;
θ = 
θ = 47.46 degrees
Testable hypotheses could be developed for questions <em>B, D, and E</em> .
The main problem with A and C is the word "better". This is a rubber word. It means different things to different people, and it can mean different things to the same person at different times. It's always a matter of opinion, it has no unique units of measure, and there is no concrete way to measure it. Not good for developing a testable hypothesis.
B.
The frequency of the vibration is above the normal human auditory range.
Normal audible range is from 20 hertz(cycles per second), to 20,000 Hz
As we age it is the higher frequencies we lose.