A and C are incorrect because they are not complete transfer of valence electrons. Ionic bonds best to form a neutral molecule
Answer:
The answer to your question is 160 g of Fe₂O₃
Explanation:
Data
mass of Fe = 112 g
mass of CO = in excess
mass of Fe₂O₃ = ?
Balanced chemical reaction
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
Process
1.- Calculate the molar mass of Fe₂O₃ and Fe
Molar mass Fe₂O₃ = (56 x 2) + (16 x 3) = 112 + 48 = 160 g
atomic mass of Fe = 56
2.- Use proportions to calculate the mass of Fe₂O₃ needed
160 g of Fe₂O₃ ------------------- 2(56) g of Fe
x g of Fe₂O₃ ------------------ 112 g of Fe
x = (112 x 160) / 2(56)
x = 17920/112
x = 160 g of Fe₂O₃
Halogens
Explanation:
Halogens are a group of non-metals located in the seventh group on the periodic table. The will only gain one electron during a chemical reaction.
- Halogens have a seven electrons in their outermost shell.
- To complete the number of electrons in this shell, they need to gain an additional electron.
- One more electron makes the halogen similar to the corresponding noble gas which is very stable.
- Halogens are very reactive groups of elements and are highly electronegative.
- They have a high affinity for electrons.
- These elements are fluorine, chlorine, bromine, iodine and Astatine.
learn more:
Halogens brainly.com/question/6324347
#learnwithBrainly
Answer: b.) they tend to lose electrons to gain stability
Explanation:
Answer:
C.)One electron in each p orbital
Explanation:
In a P-sublevel with 3 electrons, they should be arranged with one electron going into each p-orbitals.
This is in accordance with the Hund's rule of maximum multiplicity.
The rule states that "electrons go into degenerate orbitals or sub-levels(p,d and f) singly before paring up".
Since the p-orbital is 3-fold degenerate with a capacity to accommodate a maximum number of 6 electrons, given 3 electrons, they will follow the Hund's rule in order to fill the orbitals.
So one electron will go in each p - orbitals easily.