Answer:
thermometer
Explanation:
The most important tool to use when collecting data relating to how thermal energy affects metals would be <u>the thermometer.</u>
The thermometer is an instrument used to measure temperatures and the temperature of a body is a measure of the amount of thermal energy present in the body.
<em>In order to obtain data relating to how thermal energy affects metals, the most important variable to take note of would be the thermal energy of the metals and this can only be done by the thermometer.</em>
Answer:
126.0g of water were initially present
Explanation:
The electrolysis of water occurs as follows:
2H₂O(l) ⇄ 2H₂(g) + O₂(g)
<em>Where 2 moles of water produce 2 moles of hydrogen and 1 mole of oxygen.</em>
<em />
To find the mass of water we need to determine moles of oxygen and hydrogen, thus:
<em>Moles Hydrogen:</em>
14.0g H₂ ₓ (1mol / 2g H₂) = 7 moles H₂
<em>Moles Oxygen:</em>
112.0g O₂ ₓ (1mol / 32g) = 3.5 moles O₂
Based on the chemical equation, the moles of water initially present were 7 moles (That produce 7 moles H₂ and 3.5 moles O₂). The mass of 7 moles of H₂O is:
7 moles H₂O * (18g / mol) =
<h3>126.0g of water were initially present</h3>
Explanation
NaCl: Ionic crystal lattice forces
Hg: Metallic bonding
CO₂: London dispersion forces
CH₄: London dispersion forces
Li₂O: Ionic crystal lattice forces
Ag: Metallic bonds
Ionic crystal lattice forces are strong electrostatic force of attraction between oppositely charged ions arranged into a crystal lattice of ionic compound. NaCl and Li₂O are ionic compounds
London dispersion forces holds the molecules of carbon dioxide and methane. They are weak attractions found between non-polar (and polar) molecules.
Metallic bonds exists between Mercury and Gold atoms. This is due to sea of electrons present.
Answer:
Look at the properties of Oxygen and Silicon - the two most abundant elements in the Earth's crust - by clicking on their symbols on the Periodic Table.
Explanation:
Answer: You started with 8
Explanation: the amount of products is equal to the amount of reactants