Answer:
A push or pull is referred to as a force. Forces can cause objects to move, slow, stop, or change the direction in which they travel. The force of gravity, for example, pulls all objects toward the Earth's center. Every time two things interact, a force is exerted on each of them. When this happens, the two items no longer feel the force after the interaction ends.
Answer:
17.1 mol
Explanation:
(8.68g/mL * 125 mL) = 1085 g
1085 g/ (63.55 g/mol) = 17.1 mol
<u>Answer:</u> The new pressure will be 101.46 kPa.
<u>Explanation:</u>
To calculate the new pressure, we use the equation given by Gay-Lussac Law. This law states that pressure is directly proportional to the temperature of the gas at constant volume.
The equation given by this law is:

where,
are initial pressure and temperature.
are final pressure and temperature.
We are given:
By using conversion factor: 

Putting values in above equation, we get:

Hence, the new pressure will be 101.46 kPa.
Answer:
7.3 g (NH₄)₃PO₄
Explanation:
The balanced equation for the reaction is:
H₃PO₄ + 3 NH₃ ----> (NH₄)₃PO₄
To find the mass of ammonium phosphate ((NH₄)₃PO₄) produced, you need to (1) convert grams NH₃ to moles NH₃ (via the molar mass from the periodic table), then (2) convert moles NH₃ to moles (NH₄)₃PO₄ (via mole-to-mole ratio from balanced equation), and then (3) convert moles (NH₄)₃PO₄ to grams (NH₄)₃PO₄ (via molar mass from periodic table). Make sure to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 2 sig figs because the given value (2.5 grams) has 2 sig figs.
Molar Mass (NH₃): 14.01 g/mol + 3(1.008 g/mol)
Molar Mass (NH₃): 17.034 g/mol
Molar Mass ((NH₄)₃PO₄):
3(14.01 g/mol) + 12(1.008 g/mol) + 30.97 g/mol + 4(16.00 g/mol)
Molar Mass ((NH₄)₃PO₄): 149.096 g/mol
2.5 g NH₃ 1 mole NH₃ 1 mole (NH₄)₃PO₄ 149.096 g
--------------- x -------------------- x --------------------------- x --------------------------
17.034 g 3 moles NH₃ 1 mole (NH₄)₃PO₄
= 7.3 g (NH₄)₃PO₄