Answer:
d) is the same as when it started from rest
Explanation:
using equation of motion
v = u + at
second law of momentum defines
F = ma
a = F /m
the equation becomes
v = u + (F/m)t
from hear
since v is directly proportional to the force and the force remain the same, the increase in the cart speed will also remain the same.
Answer:A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding.
Explanation:
Answer: There are number of electrons.
Explanation:
We are given 50 Coulombs of charge and we need to find the number of electrons that can hold this much amount of charge. So, to calculate that we will use the equation:
where,
n = number of electrons
Charge of one electron =
Q = Total charge = 50 C.
Putting values in above equation, we get:
Hence, there are number of electrons.
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m