Answer:
No work was done because it is not hard to carry a ####### bag of dog food up the stairs.
Explanation:
The FitnessGram Pacer Test is a multistage aerobic capacity test that progressively gets more difficult as it continues. The 20 meter pacer test will begin in 30 seconds. Line up at the start. The running speed starts slowly, but gets faster each minute after you hear this signal. A single lap should be completed each time you hear this sound. Remember to run in a straight line, and run as long as possible.
Answer:
Pressure, P = 32666.66 Pa
Explanation:
It is given that,
Surface area of foot of Bimaba is 150 cm² or 0.015 m².
Her weight is 50 kg
We need to find the pressure does she exert on the ground, as she stands on her one foot. The force acting per unit area is called pressure. It can be given by :

So, the pressure is 32666.66 Pa.
The arrows in models of magnetic and electric fields show both their magnitude and direction.
In Physics, a vector refers to a quantity that has both magnitude and direction. Hence, a vector always points in a given direction. The direction in which the arrow points is the direction of the vector in space.
In models of magnetic and electric fields, field vectors depicted by arrows because they represent both their magnitude and direction. The length of the arrow shows magnitude.
Learn more: brainly.com/question/102477
A gravitational field is the field generated by a massive body, that extends into the entire space. Every object with mass m experiences a force F when immersed in a gravitational field. The intensity of the force is equal to

where

is the gravitational constant, M is the mass of the source of the field (e.g. the mass of a planet), and r is the distance between the object and the source of the field. The force is always attractive.
A possible way to measure the intensity of a gravitational field is by measuring the acceleration a of the object immersed in this field. In fact, for Newton's second law we have:

but since

we can write

Therefore, by measuring the acceleration of the object, we also measure the intensity of the field.