Answer:
The answer is A. on edgen.
Explanation:
A. adding in the boxes an arrow that points from Qh to Qc
Answer:
Explanation:
Given that,
The volume of the balloon is
V = 440 × 10³ m³
Buoyant force F?
Given the density of the surrounding to be 2.58 kg/m³
ρ = 2.58 kg/m³
The buoyant force is the weight of water displaced and it is calculated using
F_b = ρVg
Where
F_b is buoyant force
ρ is density
V is the volume of the liquid displace.
g is the acceleration due to gravity
Then,
F_b = ρVg
F_b = 2.58 × 440 × 10³ × 9.81
F_b = 1.1 × 10^7 N
ANSWER

EXPLANATION
Parameters given:
Initial velocity, u = 26.2 m/s
When the vase reaches its maximum height, its velocity becomes 0 m/s. That is the final velocity.
We can now apply one of Newton's equations of motion to find the height:

where a = g = acceleration due to gravity = 9.8 m/s²
Therefore, we have that:

That is the height that the vase will reach.
The starter motor's potential difference across the headlight bulbs is 38.45V, requiring an additional 39 a from the battery. Voltage, also known as potential difference.
It is sometimes described as the amount of work needed to move a test charge between two sites, expressed as a unit of charge. Volt is the potential difference's SI unit (V). We only take into account the charge between the locations P and Q when current moves between them in an electric circuit. Electric potential difference between two sites is referred to as voltage, also known as electric pressure, electric tension, or (electric) potential difference. an electric field that is static.
Vh = I*Rn
Vh = 39/5.476*5.40v
Vh = 38.45v
Learn more about voltage here
brainly.com/question/13521443
#SPJ4