Answer:
Explanation:
<u>Instant Velocity and Acceleration
</u>
Give the position of an object as a function of time y(x), the instant velocity can be obtained by

Where y'(x) is the first derivative of y respect to time x. The instant acceleration is given by

We are given the function for y

Note we have changed the last term to be quadratic, so the question has more sense.
The velocity is

And the acceleration is

Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)
Answer:
Explanation:
Given
Ball of mass m
maximum Bearable Tension in string is F
Let length of the cord be L m and moving at a speed of v m/s
Here Tension will Provide Centripetal Force
T=Centripetal Force


Answer:
The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
Explanation:
From the question we are told that
The distance between earth and Retah is 
Here c is the peed of light with value 
The time taken to reach Retah from earth is 
The velocity of the spacecraft is mathematically evaluated as

substituting values


The time elapsed in the spacecraft’s frame is mathematically evaluated as

substituting value
![T = 90000 * \sqrt{ 1 - \frac{[2.4*10^{8}]^2}{[3.0*10^{8}]^2} }](https://tex.z-dn.net/?f=T%20%20%3D%20%2090000%20%2A%20%20%5Csqrt%7B%201%20-%20%20%5Cfrac%7B%5B2.4%2A10%5E%7B8%7D%5D%5E2%7D%7B%5B3.0%2A10%5E%7B8%7D%5D%5E2%7D%20%7D)

=> 
So The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame