Igneous rock makes up the majority of the mares. Because of volcanic eruption.
Explanation:
energy cannot be created or destroyed, but only changed from one form to another or transferred from one object to another.
Given Data: Diameter 'd' = 30 cm = 0.3 m Lifting Weight 'W' = mg = 2000*9.81 N = 19,620 N Calculations: Area of the lift 'A' = <span>pi\over4*d^2=pi\over4*0.3^2=0.07 m^2
Thank you for posting your question here at brainly. I hope the answer helps. </span>
Answer:
s = 6.25 10⁻²² m
Explanation:
Polarizability is the separation of electric charges in a structure, in the case of the atom it is the result of the separation of positive charges in the nucleus and the electrons in their orbits, macroscopically it is approximated by
p = q s
s = p / q
let's calculate
s = 1 10⁻⁴⁰ / 1.6 10⁻¹⁹
s = 0.625 10⁻²¹ m
s = 6.25 10⁻²² m
We see that the result is much smaller than the size of the atom, therefore this simplistic model cannot be taken to an atomic scale.
Answer:
9.60 m/s
Explanation:
The escape speed of an object from the surface of a planet/asteroid is given by:

where
G is the gravitational constant
M is the mass of the planet/asteroid
R is the radius of the planet/asteroid
In this problem we have
is the density of the asteroid
is the volume
So the mass of the asteroid is

The asteroid is approximately spherical, so its volume can be written as

where R is the radius. Solving for R,
![R=\sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{\frac{3(3.09\cdot 10^{12} m^3)}{4\pi}}=9036 m](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%283.09%5Ccdot%2010%5E%7B12%7D%20m%5E3%29%7D%7B4%5Cpi%7D%7D%3D9036%20m)
Substituting M and R inside the formula of the escape speed, we find:
