Answer:
Hans is more powerful
Explanation:
Power: This can be defined as the rate at which work is done or energy is used up.
The expression for power is given as,
P = E/t
P = mgh/t................. Equation 1
Where P = power, W = Work, t = time, m = mass, h = height, g = acceleration due to gravity.
Hans' power
P = mgh/t
Given: m = 100 kg, h = 2 m, g = 9.8 m/s², t = 3 s
Substitute into equation 1
P = 100(9.8)(2)/3
P = 653.33 W.
Frans' power
P' = mgh/t
Given; m = 200 kg, h = 5 m, t = 20 s.
P' = 200(5)(9.8)/20
P' = 9800/20
P' = 490 W
from the above,
since P>P'
Hence, Hans is more powerful
Answer:
54 km/hr
Explanation:
m/s to km/hr => 18/5
15 m/s to km/hr => 15 x 18/5 =>3 x 18 => 54km/hr
Answer:
20.25 m
Explanation:
- <u>Centripetal acceleration </u>is given by; the square of the velocity, divided by the radius of the circular path.
That is;
<em><u>ac = v²/r</u></em>
<em> </em><em><u> Where; ac = acceleration, centripetal, m/s², v is the velocity, m/s and r is the radius, m</u></em>
Therefore;
r = v²/ac
= 27²/36
= 20.25 m
Hence the radius is 20.25 meters
Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is
, which means that a bar of length
with a thermal expansion coefficient
under a temperature variation
will experiment a length variation
.
We have then
= 0.481 foot,
= 1671 feet and
= 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a
= 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be
= 35.14°C
Answer:
B. changing shape and changing volume
Explanation:
*no definite shape (takes the shape of its container)
*no definite volume