Answer:
4i.
Step-by-step explanation:
To find the flux through the square, we use the divergence theorem for the flux. So Flux of F(x,y) = ∫∫divF(x,y).dA
F(x,y) = hxy,x - yi
div(F(x,y)) = dF(x,y)/dx + dF(x,y)dy = dhxy/dx + d(x - yi)/dy = hy - i
So, ∫∫divF(x,y).dA = ∫∫(hy - i).dA
= ∫∫(hy - i).dxdy
= ∫∫hydxdy - ∫∫idxdy
Since we are integrating along the boundary of the square given by −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, then
∫∫divF(x,y).dA = ∫₋₁¹∫₋₁¹hydxdy - ∫₋₁¹∫₋₁¹idxdy
= h∫₋₁¹{y²/2}¹₋₁dx - i∫₋₁¹[y]₋₁¹dx
= h∫₋₁¹{1²/2 - (-1)/2²}dx - i∫₋₁¹[1 - (-1)]dx
= h∫₋₁¹{1/2 - 1)/2}dx - i∫₋₁¹[1 + 1)]dx
= 0 - i∫₋₁¹2dx
= - 2i[x]₋₁¹
= 2i[1 - (-1)]
= 2i[1 + 1]
= 2i(2)
= 4i
Answer:
6
Step-by-step explanation:
first, we need to find the GCF (Greatest Common Factor) which is the highest number that can go into every number in the equation (In this case, those numbers are 24 and 30)
The GCF for this would be 6, meaning that there would be 6 bags with and equal amount of granola bars and protein bars.
To be more specific, every bag would have 4 granola bars and 5 protein bars.
Answer: B, D
Step-by-step explanation:
You Can just count the blocks
B: has 24 and D has 24 which both of them are between 30 and 20
Answer:
$4.85
Step-by-step explanation:
Add the numbers:
2.95
1.05
<u>0.85</u>
4.85