The chemical behavior of an atoms is determine by the formation or destruction of chemical bonds. The chemical bonds are the result of the interaction of the electrons of the atoms. Chemical properties of the atoms are given by how attached are the shell electrons attached to the nucleus and how they interact with other atoms. Chemical changes are the result of exchange valence electrons of the atoms. So, <span>the answer is the atomic particle that determines the chemical behavior of an atom is the electron, because it is the particle that is active in chemical bonding.</span>
Answer: <span>Arachidonic Acid and PGE</span>₁<span> are both carboxylic acids with
<u>Twenty Carbon</u> atoms. The differences are that Arachidonic acid contains
<u>Four <em>cis</em> Double Bonds</u> and no other functional groups, whereas PGE</span>₁<span> has
<u>One <em>Trans</em> Double Bond, Two Hydroxyl and One Ketone Functional Groups.</u>. In addition, a part of the PGE</span>₁<span> chain forms a
<u>Five Membered Ring</u>.
Structures of Both Arachidonic Acid and PGE</span>₁ are shown Below,
Land will warm faster/quicker
<span>UV gel enhancements rely on ingredients from the monomer liquid and polymer powder chemical family. The chemicals from the polymer powder family </span><span>can absorb and retain extremely large amounts of a liquid relative to their own mass. Water-absorbing polymers, </span>can absorb aqueous solutions through hydrogen bonding with water molecules.
Answer:the pH is 12
Explanation:
First We need to understand the structure of trimethylamine
Due to the grades of the bond in the nitrogen with a hybridization sp3 is 108° approximately, then is generated a dipole magnetic at the upper side of the nitrogen, this dipole magnetic going to attract a hydrogen molecule of the water making the water more alkaline
C3H9N+ H2O --> C3H9NH + OH-
![k=\frac{[C3H9NH]*[OH-]}{[C3H9N]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5BC3H9NH%5D%2A%5BOH-%5D%7D%7B%5BC3H9N%5D%7D)
Then:
The concentration of the trimethylamine is 0.3 and the concentration of the ion C3H9NH is equal to the OH- relying on the stoichiometric equation. We could find the concentration of the OH- ion with the square root of the multiplication between k and the concentration of trimethylamine
[OH-]=
[OH-]=0.01
pH=14-(-log[OH-])
pH=12