111.1 mL of water
Explanation:
Weight per volume concentration (w/v %) is defined as
weight per volume concentration = (mass of solute (g) / volume of solution (mL)) × 100
volume of solution = (mass of solute × 100) / weight per volume concentration
volume of solution = (1 × 100) / 0.9 = 111.1 mL
volume of water = volume of solution = 111.1 mL
Learn more about:
weight per volume concentration
brainly.com/question/12721794
#learnwithBrainly
Answer:
Cu(s) + 2AgNO3(aq)→Cu(NO3)2(aq)+2Ag(s)
This chemical equation means:
One mole of solid copper plus two moles of aqueous silver nitrate produce one mole of copper(II) nitrate plus two moles of solid silver.
This is a single replacement reaction in which the metal copper replaces the metal silver.
Answer:

Explanation:
C = Allowable concentration = 1.1 mg/L
= Flow rate of river = 
= Discharge from plant = 
= Background concentration = 0.69 mg/L
= Maximum concentration that of the pollutant
The concentration of the mixture will be

The maximum concentration that of the pollutant (in mg/L) that can be safely discharged from the wastewater treatment plant is
.
Answer:
C. 4.00 K
Explanation:
We can solve this using Charles's Law of the ideal gas. The law describes that when the pressure is constant, the volume will be directly proportional to the temperature. Note that the temperature here should only use the Kelvin unit. Before compressed, the volume of the gas is 50ml(V1) and the temperature is 20K (T1). After compressed the volume becomes 10ml(V2). The calculation will be:
V1 / T1= V2 / T2
50ml / 20K = 10ml / T2
T2= 10ml/ 50ml * 20K
T2= 4K