Answer:
two places where thermal conduction takes place are gases and liquids, conduction is due to collisions of molecules during their random motion. Hence, the correct option is (C). Note: Though, the particle distances between gases are much more in comparison to solids and liquids, conduction slowly occurs in gases also
Explanation:
i hope it will help you
Given:
A cylindrical container closed of both end has a radius of 7cm and height of 6cm.
Explanation:
A.) Find the total surface area of the container.
- A = 2πrh + 2πr²
- A = 2(3.14)(7)(6) + 2(3.14)(7 × 7)
- A = 263.76 + 307.72
- A = 571.48
B.) Find the volume of the container.
- V = πr²h
- V = (3.14)(7×7)(6)
- V = 923.16
Not sure huhuness.
#CarryOnLearning
Answer:
L = μ₀ n r / 2I
Explanation:
This exercise we must relate several equations, let's start writing the voltage in a coil
= - L dI / dt
Let's use Faraday's law
E = - d Ф_B / dt
in the case of the coil this voltage is the same, so we can equal the two relationships
- d Ф_B / dt = - L dI / dt
The magnetic flux is the sum of the flux in each turn, if there are n turns in the coil
n d Ф_B = L dI
we can remove the differentials
n Ф_B = L I
magnetic flux is defined by
Ф_B = B . A
in this case the direction of the magnetic field is along the coil and the normal direction to the area as well, therefore the scalar product is reduced to the algebraic product
n B A = L I
the loop area is
A = π R²
we substitute
n B π R² = L I (1)
To find the magnetic field in the coil let's use Ampere's law
∫ B. ds = μ₀ I
where B is the magnetic field and s is the current circulation, in the coil the current circulates along the length of the coil
s = 2π R
we solve
B 2ππ R = μ₀ I
B = μ₀ I / 2πR
we substitute in
n ( μ₀ I / 2πR) π R² = L I
n μ₀ R / 2 = L I
L = μ₀ n r / 2I
Answer:
ΔTmin = 3.72 °C
Explanation:
With a 16-bit ADC, you get a resolution of
steps. This means that the ADC will divide the maximum 10V input into 65536 steps:
ΔVmin = 10V / 65536 = 152.59μV
Using the thermocouple sensitiviy we can calculate the smallest temperature change that 152.59μV represents on the ADC:

Answer:
n = 1.76
Explanation:
According to the rule of ( n1 sin theta1 = n2 sin theta2 )
we know both angles so we insert them to the law and apply n1 = 1
so 1/2 = n2 sin 62 and we get the final answer