1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
2 years ago
12

In a 400-m relay race the anchorman (the person who runs the last 100 m) for team A can run 100 m in 9.8 s. His rival, the ancho

rman for team B, can cover 100 m in 10.1 s. What is the largest lead the team B runner can have when the team A runner starts the final leg of the race, in order that the team A runner not lose the race?
Physics
1 answer:
melisa1 [442]2 years ago
5 0

Answer:

largest lead = 3 m

Explanation:

Basically, this problem is about what is the largest possible distance anchorman for team B can have over the anchorman for team A when the final leg started that anchorman for team A won the race. This show that anchorman for team A must have higher velocity than anchorman for team B to won the race as at the starting of final leg team B runner leads the team A runner.

So, first we need to calculate the velocities of both the anchorman  

given data:

Distance = d = 100 m

Time arrival for A = 9.8 s

Time arrival for B = 10.1 s

Velocity of anchorman A = D / Time arrival for A

=100/ 9.8 = 10.2 m/s

Velocity of anchorman B = D / Time arrival for B

=100/10.1 = 9.9 m/s

As speed of anchorman A is greater than anchorman B. So, anchorman A complete the race first than anchorman B. So, anchorman B covered lower distance than anchorman A. So to calculate the covered distance during time 9.8 s for B runner, we use

d = vt

= 9.9 x 9.8 = 97 m  

So, during the same time interval, anchorman A covered 100 m distance which is greater than anchorman B distance which is 97 m.

largest lead = 100 - 97 = 3 m

So if his lead no more than 3 m anchorman A win the race.

You might be interested in
arzan, who weighs 700 N, swings from a cliff at the end of a convenient vine thatis 20 m long. From the top of the cliff to the
vekshin1

Answer:

= 7.07 m

Explanation:

The Tarzan reaches bottom of swing after descending 2.5 m,

change in his potential energy equals his kinetic energy at bottom of swing

m g h = (1/2) m v²   ,  

hence speed v of Tarzan at bottom of swing is given as  

v = ( 2 g h )1/2

= ( 2 × 9.8 × 2.5 )1/2

= 7 m/s

At the bottom of swing, if the vine breaks, then he is moving with horizontal velocity 7 m/s in gravitational field.  

If vertical distance from ground to bottom of swing is 5 m, then time t for Tarzan to reach ground is given by

S = (1/2)g t2 or   t = (2S/g)1/2

= ( 2 × 5 / 9.8 )1/2

= 1.01 s

Horizontal distance traveled by Tarzan = 1.01 × 7

= 7.07 m

7 0
2 years ago
A package is dropped from an air balloon two times. In the first trial the distance between the balloon and the surface is Hand
enyata [817]

Answer:

<em>The final speed of the second package is twice as much as the final speed of the first package.</em>

Explanation:

<u>Free Fall Motion</u>

If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

v=gt

And the distance traveled downwards is:

\displaystyle y=\frac{gt^2}{2}

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

\displaystyle t=\sqrt{\frac{2y}{g}}

Replacing into the first equation:

\displaystyle v=g\sqrt{\frac{2y}{g}}

Rationalizing:

\displaystyle v=\sqrt{2gy}

Let's call v1 the final speed of the package dropped from a height H. Thus:

\displaystyle v_1=\sqrt{2gH}

Let v2 be the final speed of the package dropped from a height 4H. Thus:

\displaystyle v_2=\sqrt{2g(4H)}

Taking out the square root of 4:

\displaystyle v_2=2\sqrt{2gH}

Dividing v2/v1 we can compare the final speeds:

\displaystyle v_2/v_1=\frac{2\sqrt{2gH}}{\sqrt{2gH}}

Simplifying:

\displaystyle v_2/v_1=2

The final speed of the second package is twice as much as the final speed of the first package.

5 0
2 years ago
Need help on this,<br>will mark brainliest if you answer.<br>​
Alecsey [184]

Answer:

(1) tropical storm

(2) Severe tropical storm

(3) 305 kmh

5 0
2 years ago
What do you mean by population size explain​
torisob [31]
Population size is the actual number of individuals in a population. Population density is a measurement of population size per unit area, i.e., population size divided by total land area. Abundance refers to the relative representation of a species in a particular ecosystem.
8 0
3 years ago
you start your bicycle ride at the top of a hill. you coast down the hill at a constant acceleration of 2.00 m/s^2. When you get
stiv31 [10]
198 meters I think, I could be wrong
6 0
3 years ago
Other questions:
  • PLS PLS PLS PLS PLS PLS PLS PLS PLS HELP FREE POINTS
    10·1 answer
  • Which type of current is produced by a wire breaking magnetic field lines and changing the polarity?
    13·2 answers
  • An electric motor is connected to a battery. The current flows through brushes to a commutator ring, which is attached to an ele
    15·2 answers
  • Suppose an astrophotographer hands you a picture with star trails taken looking toward the north celestial pole. If the star tra
    11·1 answer
  • A rocket passes you at a speed of 0.85c, and you measure its length to be 35.0 m. What is its measured length when at rest?
    13·1 answer
  • How many atoms of oxygen are there in one molecule of trinitrotoluene, if the chemical formula is C6H3(NO2)3?
    15·2 answers
  • What is the unit for measuring electric current?<br> A.Volt<br> B.ampere<br> C.ohm<br> D.coulomb
    5·2 answers
  • How many times more gravitational potential energy would the same lander have on top of a 350-m hill on Earth? It would have tim
    7·1 answer
  • Why does a magnet attract a steel nail
    8·1 answer
  • a tire has a tread pattern with a crevice every 4.00 cm. each crevice makes a single vibration as the tire moves. what is the fr
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!