Answer:
It represents the change in charge Q from time t = a to t = b
Explanation:
As given in the question the current is defined as the derivative of charge.
I(t) = dQ(t)/dt ..... (i)
But if we take the inegral of the equation (i) for the time interval from t=a to
t =b we get
Q =∫_a^b▒〖I(t) 〗 dt
which shows the change in charge Q from time t = a to t = b. Form here we can say that, change in charge is defiend as the integral of current for specific interval of time.
Answer:
The coupled velocity of both the blocks is 1.92 m/s.
Explanation:
Given that,
Mass of block A, 
Initial speed of block A, 
Mass of block B, 
Initial speed of block B, 
It is mentioned that if the two blocks couple together after collision. We need to find the common velocity immediately after collision. We know that due to coupling, it becomes the case of inelastic collision. Using the conservation of linear momentum. Let V is the coupled velocity of both the blocks. So,

So, the coupled velocity of both the blocks is 1.92 m/s. Hence, this is the required solution.
Answer:
9.82 ×
Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ = 
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 ×
Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ = 
= 
= 
= 9.8222 × 
The wavelength of the object is 9.82 ×
Hz.
Answer:
a. 2v₀/a b. 2v₀/a
Explanation:
a. Since you are moving with a constant velocity v₀, the distance, s you cover in time = t max is s = v₀t.
Since the dragster starts from rest with an acceleration, a, using
s' = ut + 1/2at² where u = 0 and s' = distance moved by dragster
s' = 0t + 1/2at²
s' = 1/2at²
Since the distance moved by me and the dragster must be the same,
s = s'
v₀t. = 1/2at²
v₀t. - 1/2at² = 0
t(v₀ - 1/2at) = 0
t= 0 or v₀ - 1/2at = 0
t= 0 or v₀ = 1/2at
t= 0 or t = 2v₀/a
So the maximum time tmax = 2v₀/a
b. Since the distance covered by me to meet the dragster is s = v₀t in time, t = tmax which is also my distance from the dragster when it started. So, my distance from the dragster when it started is s = v₀(2v₀/a)
= 2v₀/a