Answer:
Please refer to the figure.
Explanation:
The magnitude of the magnetic field can be found by Biot-Savart Law. We should divide the loop into four components. Each component has a similar solution but their directions are quite different.
The directions can be found by right-hand rule. Point your index finger into the direction of current, point your middle finger towards the target point (0,0,a). Your thumb will show you the direction of magnetic field.
A freight car of mass 20,000 kg moves along a frictionless level railroad track ... After the push the skateboarder II moves with a velocity of 2 m/s to ... After the collision the cars stick to each other and ... diver jumps with a velocity of 3 m/s in opposite ... A 10 kg object moves at a constant velocity 2 m/s to the right and collides
<h3>
Answer:</h3>
225 meters
<h3>
Explanation:</h3>
Acceleration is the rate of change in velocity of an object in motion.
In our case we are given;
Acceleration, a = 2.0 m/s²
Time, t = 15 s
We are required to find the length of the slope;
Assuming the student started at rest, then the initial velocity, V₀ is Zero.
<h3>Step 1: Calculate the final velocity, Vf</h3>
Using the equation of linear motion;
Vf = V₀ + at
Therefore;
Vf = 0 + (2 × 15)
= 30 m/s
Thus, the final velocity of the student is 30 m/s
<h3>Step 2: Calculate the length (displacement) of the slope </h3>
Using the other equation of linear motion;
S = 0.5 at + V₀t
We can calculate the length, S of the slope
That is;
S = (0.5 × 2 × 15² ) - (0 × 15)
= 225 m
Therefore, the length of the slope is 225 m
<span>The answer is a heterogeneous mixture. Mixtures can be homogeneous and heterogeneous. If a solid and a liquid of a mixture cannot be separated and the difference between them is not visible, it is called homogeneous mixture (or solution). If a solid and a liquid of a mixture are visible and can be separated easily, the mixture is called heterogeneous.</span>
Answer:
El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.
Explanation:
El gasto es el flujo volumétrico de gasolina (
), medido en pies cúbicos por segundo, que sale de la manguera. Asumiendo que la velocidad de salida es constante, tenemos que el gasto a través de la manguera es:
(1)
Donde:
- Diámetro de la manguera, medido en pies.
- Velocidad medida de salida, medida en pies por segundo.
Si sabemos que
y
, entonces el gasto de gasolina es:


El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.