Answer:
<em>0.25</em>
Explanation:
According to newtons law of motion
\sum F_x = ma
F_f = ma
nR = ma
nmg = ma
ng = a
n = a/g
g is the acceleration due to gravity
Given
a = 2.42m/s²
g = 9.8m/s²
Substitute into the formula;
n = 2.42/9.8
n = 0.25
<em>Hence the coefficient of kinetic friction is 0.25</em>
<em></em>
Answer:
991.67 miles per day
Explanation:
Since it travels 2975 miles per day, distance traveled in a day =2975/3=991.67 miles
Answer:
F_total = 29.4 N, directed to the right of particle 2
Explanation:
We must solve this problem in parts, first we calculate each force and then we apply Newton's law to add the forces.
Let's use Coulomb's law to calculate each force
F = 
particles 1 and 2
q₁ = 8.0 10⁻⁶ C, q₂ = 3.5 10⁻⁶ C x₁₂ = 0.10 m
F₁₂ = 9 10⁹ 8.0 3.5 10⁻¹² / 0.1²
F₁₂ = 2.59 10¹ N
Since the two charges are of the same sign, this force is repulsive and is directed towards the positive side of the x axis.
particles 2 and 3
q₂ = 3.6 10⁻⁶ C, q₃ = 2.5 10⁻⁶ C, x₂₃ = 0.15 m
we calculate
F₂₃ = 9 10⁹ 3.5 2.5 10⁻¹²/ 0.15²
F₂₃ = 3.5 N
as the charge is of different sign, the force is attractive, therefore it is directed to the right of the load 2
Now we add the forces as vectors
F_total = ∑ F = F₁₂ + F₂₃
F_total = 25.2 +3.5
F_total = 29.4 N
directed to the right of particle 2
Because if your putting tension on something tensions obviously going to increase with more pressure and weight on it
Answer:
The period would decrease by sqrt(2)
Explanation:
The restoring force is given by,
F = -kx
According to Newton's second law of motion,
ma = -kx
ma + kx = 0
The time period is given by,
T =
Where
is the angular velocity and it is given by,
= 
Now if the spring constant is doubled then,

Thus,
=



Thus, The period would decrease by sqrt(2).
Hence, option D is correct.