Answer:
a. (a) grating A has more lines/mm; (b) the first maximum less than 1 meter away from the center
Explanation:
Let n₁ and n₂ be no of lines per unit length of grating A and B respectively.
λ₁ and λ₂ be wave lengths of green and red respectively , D be distance of screen and d₁ and d₂ be distance between two slits of grating A and B ,
Distance of first maxima for green light
= λ₁ D/ d₁
Distance of first maxima for red light
= λ₂ D/ d₂
Given that
λ₁ D/ d₁ = λ₂ D/ d₂
λ₁ / d₁ = λ₂ / d₂
λ₁ / λ₂ = d₁ / d₂
But
λ₁ < λ₂
d₁ < d₂
Therefore no of lines per unit length of grating A will be more because
no of lines per unit length ∝ 1 / d
If grating B is illuminated with green light first maxima will be at distance
λ₁ D/ d₂
As λ₁ < λ₂
λ₁ D/ d₂ < λ₂ D/ d₂
λ₁ D/ d₂ < 1 m
In this case position of first maxima will be less than 1 meter.
Option a is correct .
The equation for electrical power is<span>P=VI</span>where V is the voltage and I is the current. This can be rearranged to solve for I in 6(a).
6(b) can be solved with Ohm's Law<span>V=IR</span>or if you'd like, from power, after substituting Ohm's law in for I<span>P=<span><span>V2</span>R</span></span>
For 7, realize that because they are in parallel, their voltages are the same.
We can find the resistance of each lamp from<span>P=<span><span>V2</span>R</span></span>Then the equivalent resistance as<span><span>1<span>R∗</span></span>=<span>1<span>R1</span></span>+<span>1<span>R2</span></span></span>Then the total power as<span><span>Pt</span>=<span><span>V2</span><span>R∗</span></span></span>However, this will reveal that (with a bit of algebra)<span><span>Pt</span>=<span>P1</span>+<span>P2</span></span>
For 8, again the resistance can be found as<span>P=<span><span>V2</span>R</span></span>The energy usage is simply<span><span>E=P⋅t</span></span>
Answer:
An object can have a displacement in the absence of any external force acting on it
Explanation:
When a object moves with a constant velocity (v), then it gets displaced in the direction of motion but the net external force experienced by the object is zero.
F external =ma
If object moves with constant velocity, acceleration is zero.
Since, a=0 ⟹F external =0
Using s=ut+ 1/2 at ^2
⟹ Displacement s=ut (∵a=0)
Hence, an object can have a displacement in the absence of any external force acting on it
Hope this helped you:)