I think it’s hydrothermal vents, rifts and subduction trench
Answer:
138.96kJ is the maximum electrical work
Explanation:
The maximum electrical work that can be obtained from a cell is obtained from the equation:
W = -nFE
<em>Where W is work in Joules,</em>
<em>n are moles of electrons = 2mol e- because half-reaction of Zn is:</em>
Zn(s) → Zn²⁺(aq) + 2e⁻
F is faraday constant = 96500Coulombs/mol
E is cell potential = 0.72V
Replacing:
W = -2mol*96500Coulombs/mol*0.72V
W = - 138960J =
<h3>138.96kJ is the maximum electrical work</h3>
<em />
Answer is: the number of ions produced in the dissociation of aluminium fluoride is 4.
<span>
Chemical dissociation of aluminium fluoride in
water:
AlF</span>₃(aq) →
Al³⁺(aq) + 3F⁻(aq).<span>
There are four ions, one aluminium cation and
three fluoride anions.
Aluminium has oxidation +3, because it lost
three electrons, to have electron configuration as noble gas neon and fluorine has oxidation -1, because it gain one electron to </span>have electron configuration as noble gas neon.
Answer:
Enthalpy change for the reaction is -67716 J/mol.
Explanation:
Number of moles of
in 50.0 mL of 0.100 M of 
= Number of moles of HCl in 50.0 mL of 0.100 M of HCl
=
moles
= 0.00500 moles
According to balanced equation, 1 mol of
reacts with 1 mol of HCl to form 1 mol of AgCl.
So, 0.00500 moles of
react with 0.00500 moles of HCl to form 0.00500 moles of AgCl
Total volume of solution = (50.0+50.0) mL = 100.0 mL
So, mass of solution = (
) g = 100 g
Enthalpy change for the reaction = -(heat released during reaction)/(number of moles of AgCl formed)
=
= ![\frac{-100g\times 4.18\frac{J}{g.^{0}\textrm{C}}\times [24.21-23.40]^{0}\textrm{C}}{0.00500mol}](https://tex.z-dn.net/?f=%5Cfrac%7B-100g%5Ctimes%204.18%5Cfrac%7BJ%7D%7Bg.%5E%7B0%7D%5Ctextrm%7BC%7D%7D%5Ctimes%20%5B24.21-23.40%5D%5E%7B0%7D%5Ctextrm%7BC%7D%7D%7B0.00500mol%7D)
= -67716 J/mol
[m = mass, c = specific heat capacity,
= change in temperature and negative sign is included as it is an exothermic reaction]
Answer:
Electrons are far apart from the nucleus as we move down the group.
Explanation:
The ionization energy is the amount of energy which is necessary to remove an electron from an atom.
In an atom there exist a force of attraction at the center (nucleus). This is because of the positive charge which exists in the nucleus. This force of attraction is less felt as the distance between the electron and the proton increases. Hence the ionization energy increases as the number of shells increases for an atom. As we move down the group in the periodic table, the number of shells increases which implies a decrease in ionization energy.