If all the reactants will react and become products, the mass will be 12.5 g. Because the mass of the matter amount will not change during the reaction.
<h3>
Answer:</h3>
Al- [Ne] 3s²3p¹
As- [Ar] 4s²3d¹⁰ 4p³
Explanation:
- Electron configuration of an element shows the arrangement of electrons in the energy levels or orbitals in the atom.
- Noble-gas configuration involves use of noble gases to write the configuration of other elements.
- This is done by identifying the atomic number of the element and then identifying the noble gas that comes before that particular element on the periodic table.
- Aluminium: The atomic number of Al is 13. The noble gas before Aluminium is Neon which has 10 electrons. Therefore the remaining 3 electrons fills up the 3s and 3p sub orbitals.
- Thus, the noble-gas configuration of Al is [Ne] 3s²3p¹
2. Arsenic, Atomic number is 33
- Noble gas before Arsenic is Ar,. Argon has 17 electrons, then the remaining electrons fills up the 4s, 3d and 4p sub-orbitals.
- Thus, the noble-gas configuration of As is [Ar] 4s²3d¹⁰ 4p³
Answer:
Across a period, effective nuclear charge increases as electron shielding remains constant. A higher effective nuclear charge causes greater attractions to the electrons, pulling the electron cloud closer to the nucleus which results in a smaller atomic radius. ... This results in a larger atomic radius.
Explanation:
Now lets d8
Answer:
mechanical energy to electrical energy to light energy
Answer:
1.62
Explanation:
From the given information:
number of moles of benzamide 
= 0.58 mole
The molality = 

= 0.6837
Using the formula:

where;
dT = freezing point = 27
l = Van't Hoff factor = 1
kf = freezing constant of the solvent
∴
2.7 °C = 1 × kf × 0.6837 m
kf = 2.7 °C/ 0.6837m
kf = 3.949 °C/m
number of moles of NH4Cl = 
= 1.316 mol
The molality = 
= 1.5484
Thus;
the above kf value is used in determining the Van't Hoff factor for NH4Cl
i.e.
9.9 = l × 3.949 × 1.5484 m

l = 1.62