Gravity is the correct answer.
<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
Answer:
The length of the incline is 3.504 meters.
Explanation:
Let suppose that Julietta's ball decelerates uniformly, then we determine the length of the incline is determined by the following equation of motion:
(Eq. 1)
Where:
- Length of the incline, measured in meters.
- Initial speed of the ball, measured in meters per second.
- Aceleration of the ball, measured in meters per square second.
- Time, measured in second.
If we know that
,
and
, then the length of the incline is:


The length of the incline is 3.504 meters.
Answer: B
Explanation:
A - No, because this has nothing to do with curves
B - Yes, because it explains gravity and it it forced down by gravity
C - No, because this has nothing to do with a rocket ship an dhow much it can travel per #.
D - No, because This has nothing to do with a boat on water and it explain nothing about gravity or how fast it is.
I Hope This Helped!