The magnitude of the resultant force is given by the centripetal force, since the car is under a circular motion. So, we have:

The centripetal acceleration is given by:

Where v is the linear speed and r the radius of the circular motion. Replacing this and solving:

Answer:
See the answers below.
Explanation:
We can solve both problems using Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F =m*a
where:
F = force [N] (units of newtons)
m = mass = 1000 [kg]
a = acceleration = 3 [m/s²]
![F = 1000*3\\F=3000[N]](https://tex.z-dn.net/?f=F%20%3D%201000%2A3%5C%5CF%3D3000%5BN%5D)
And the weight of any body can be calculated by means of the mass product by gravitational acceleration.
![W=m*g\\W=1000*9.81\\W=9810 [N]](https://tex.z-dn.net/?f=W%3Dm%2Ag%5C%5CW%3D1000%2A9.81%5C%5CW%3D9810%20%5BN%5D)
The speed of a electron that is accelerated from rest through an electric potential difference of 120 V is 
<h3>
How to calculate the speed of the electron?</h3>
We know, that the energy of the system is always conserved.
Using the Law of Conservation of energy,
U=0
Here, K is the kinetic energy and U is the potential energy.
Now, substituting the formula of U and K, we get:
=0------(1)
Here,
m is the mass of the electron
v is the speed of the electron
q is the charge on the electron
V is the potential difference
Let
and
represent the final and initial speed.
Here,
=0
Solving for
, we get:


=6.49
m/s
To learn more about the conservation of energy, refer to:
brainly.com/question/2137260
#SPJ4