To solve this problem we will apply the concepts related to the centripetal Force and the Force given by weight and formulated in Newton's second law. Through the two expressions we can find the radius of curve made in the hand. To calculate the normal force, we will include the concepts of sum of forces to obtain the net force on the body at the top and bottom of the maneuver. The expression for centripetal force acting on the jet is

According to Newton's second law, the net force acting on the jet is
F = ma
Here,
m = mass
a = acceleration
v = Velocity
r = Radius
PART A ) Equating the above two expression the equation for radius is


Replacing with our values we have that
![r = \frac{(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{7(9.8m/s^2)}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B7%289.8m%2Fs%5E2%29%7D)

PART B )
<u>- The expression for effective weight of the pilot at the bottom of the circle is</u>

![N = (69kg)(9.8m/s^2)+\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}](https://tex.z-dn.net/?f=N%20%3D%20%2869kg%29%289.8m%2Fs%5E2%29%2B%5Cfrac%7B%2869%29%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B1.462%2A10%5E3m%7D)

<em>Note that the normal reaction N is directed upwards and gravitational force mg is directed downwards. At the bottom of the circle, the centripetal force is directed upwards. So the centripetal force is obtained from the gravitational force and the normal reaction. </em>
<u>- The expression for effective weight of the pilot at the top of the circle is</u>

![N = (69kg)(9.8m/s^2)-\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}](https://tex.z-dn.net/?f=N%20%3D%20%2869kg%29%289.8m%2Fs%5E2%29-%5Cfrac%7B%2869%29%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B1.462%2A10%5E3m%7D)

<em>Note that at the top of the circle the centripetal force is directed downwards. So the centripetal force is obtained from normal reaction and the gravitational force. </em>
In order to calculate the time taken by the snowball to reach the highest point in its journey, we need to consider the variables along the y-direction.
Let us list out what we know from the question so that we can decide on the equation to be used.
We know that Initial Y Velocity
= 8.4 m/s
Acceleration in the Y direction
= -9.8 m/
, since the acceleration due to gravity points in the downward direction.
Final Y Velocity
= 0 because at the highest point in its path, an object comes to rest momentarily before falling down.
Time taken t = ?
From the list above, it is easy to see that the equation that best suits our purpose here is 
Plugging in the numbers, we get 0 = 8.4 - (9.8)t
Solving for t, we get t = 0.857 s
Therefore, the snowball takes 0.86 seconds to reach its highest point.
Answer:
Explanation:
By Ohms Law, Voltage = Current * Resistance
Keeping the voltage the same and doubling the resistance, the current will be halved.
So the new current = 1.5/2 = 0.75A
The period of the wave is determined as 0.083 seconds.
<h3>What is period of a wave?</h3>
The period of a wave is the time taken by a particle of the medium to complete one vibration.
<h3>Period of the wave</h3>
The period of the wave is calculated as follows;
T = 1/f
where;
- T is the period of the wave
- f is frequency of the wave
T = 1/12
T = 0.083 seconds
Thus, the period of the wave is determined as 0.083 seconds.
Learn more about period of a wave here: brainly.com/question/18818486
#SPJ4
Answer:
0.00970 s
Explanation:
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
Force due to magnetic field = qvB sin θ
q = charge on the particle = 5.4 μC
v = velocity of the charge
B = magnetic field strength = 2.7 T
θ = angle between the velocity of the charge and the magnetic field = 90°, sin 90° = 1
F = qvB
Centripetal force responsible for circular motion = mv²/r = mvw
where w = angular velocity.
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
mvw = qvB
mw = qB
w = (qB/m) = (5.4 × 10⁻⁶ × 2.7)/(4.5 × 10⁻⁸)
w = 3.24 × 10² rad/s
w = 324 rad/s
w = (angular displacement)/time
Time = (angular displacement)/w
Angular displacement = π rads (half of a circle; 2π/2)
Time = (π/324) = 0.00970 s
Hope this Helps!!!