Answer: Work done = 153.125Joules, Work done = 0.003Nm
Explanation:
Kinetic energy of a body is the energy possessed by a body by virtue of its motion.
Mathematically,
K.E = 1/2MV²
Where;
M = mass of the body = 2.5g = 0.0025kg
V = velocity of the body = 350m/s
Substituting this values in the formula, we have;
K.E = 1/2× 0.0025×350²
K.E = 153.125Joules
Work done is the force applied to body to cause it to move through a distance.
Work = Force × distance
Force = ma = 0.0025 × 10
Force = 0.025N
Distance = 12cm = 0.12m
Work = 0.025×0.12
Work = 0.003Nm
work done by the tree in stopping the bullet is 0.003N
Get even wilder so he knows your'e not the one to joke with!
Hope This Helps Him Calm Down:)
Answer:
A. when the mass has a displacement of zero
Explanation:
The velocity of a mass on a spring can be calculated by using the law of conservation of energy. In fact, the total energy of the mass-spring system is equal to the sum of the elastic potential energy (U) of the spring and the kinetic energy (K) of the mass:

where
k is the spring constant
x is the displacement of the mass with respect to the equilibrium position of the spring
m is the mass
v is the velocity of the mass
Since the total energy E must remain constant, we can notice the following:
- When the displacement is zero (x=0), the velocity must be maximum, because U=0 so K is maximum
- When the displacement is maximum, the velocity must be minimum (zero), because U is maximum and K=0
Based on these observations, we can conclude that the velocity of the mass is at its maximum value when the displacement is zero, so the correct option is A.
Answer:
The law of conservation of momentum states that the total momentum of interacting objects does not <u>change</u>. This means the total momentum <u>before</u><u> </u>a collision or explosion is equal to the total momentum <u>after</u><u> </u>a collision or explosion.
1 milliliter = 1 cubic centimeter (cm^3)