Answer:
The power output of this engine is
The the maximum (Carnot) efficiency is
The actual efficiency of this engine is
Explanation:
From the question we are told that
The temperature of the hot reservoir is
The temperature of the cold reservoir is
The energy absorbed from the hot reservoir is
The energy exhausts into cold reservoir is
The power output is mathematically represented as
Where t is the time taken which we will assume to be 1 hour = 3600 s
W is the workdone which is mathematically represented as
substituting values
So
The Carnot efficiency is mathematically represented as
The actual efficiency is mathematically represented as
substituting values
Answer:
Since it is falling freely, the only force on it is its weight, w.
w = m × g = 250 kg × 9.8 m/s^2 = 2450 Newton/N
Answer:
7.5 m
Explanation:
= initial speed of the ball = 8 m/s
= angle of launch = 40° deg
Consider the motion along the vertical direction :
= initial velocity along vertical direction = = 8 Sin40 = 5.14 m/s
= acceleration along vertical direction = - 9.8 m/s²
= time of travel
= vertical displacement = - 1 m
Using the kinematics equation
= 1.22 sec
Consider the motion along the horizontal direction :
= initial velocity along horizontal direction = = 8 Cos40 = 6.13 m/s
= acceleration along vertical direction = 0 m/s²
= time of travel = 1.22 sec
= horizontal displacement = ?
Using the kinematics equation
= 7.5 m
Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling the initial momentum of object X and the initial momentum of object Y, we can derive the total initial momentum of the system:
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system:
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):
Answer:
Biomass, petroleum, natural gas, and propane are examples of stored chemical energy. Energy is energy stored in objects by the application of a force