Answer:
If the Kelvin temperature of a gas is increased, the volume of the gas increases. This can be understood by imagining the particles of gas in the container moving with a greater energy when the temperature is increased.
Explanation:
If you heat a gas you give the molecules more energy so they move faster. This means more impacts on the walls of the container and an increase in the pressure. Conversely if you cool the molecules down they will slow and the pressure will be decreased.
To calculate a change in pressure or temperature using Gay Lussac's Law.
[H3O+] is just the same with [H+]. There are quite a few
relationships between [H+] and [OH−]
ions. And because there is a large range of number between 10 to 10-15
M, the pH is used. pH = -log[H+] and pOH = -log[OH−]. In aqueous solutions, [H+
][OH- ] = 10-14.
The Answer is B because primary consumers need to get their food from plants.
Answer:
work done is -150 kJ
Explanation:
given data
volume v1 = 2 m³
pressure p1 = 100 kPa
pressure p2 = 200 kPa
internal energy = 10 kJ
heat is transferred = 150 kJ
solution
we know from 1st law of thermodynamic is
Q = du +W ............1
put here value and we get
-140 = 10 + W
W = -150 kJ
as here work done is -ve so we can say work is being done on system