Answer:
9 terms
Step-by-step explanation:
Given:
1, 8, 28, 56, ..., 1
Required
Determine the number of sequence
To determine the number of sequence, we need to understand how the sequence are generated
The sequence are generated using
![\left[\begin{array}{c}n&&r\end{array}\right] = \frac{n!}{(n-r)!r!}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dn%26%26r%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7Bn%21%7D%7B%28n-r%29%21r%21%7D)
Where n = 8 and r = 0,1....8
When r = 0
![\left[\begin{array}{c}8&&0\end{array}\right] = \frac{8!}{(8-0)!0!} = \frac{8!}{8!0!} = 1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%260%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-0%29%210%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B8%210%21%7D%20%3D%201)
When r = 1
![\left[\begin{array}{c}8&&1\end{array}\right] = \frac{8!}{(8-1)!1!} = \frac{8!}{7!1!} = \frac{8 * 7!}{7! * 1} = \frac{8}{1} = 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-1%29%211%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B7%211%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%21%7D%7B7%21%20%2A%201%7D%20%3D%20%5Cfrac%7B8%7D%7B1%7D%20%3D%208)
When r = 2
![\left[\begin{array}{c}8&&2\end{array}\right] = \frac{8!}{(8-2)!2!} = \frac{8!}{6!2!} = \frac{8 * 7 * 6!}{6! * 2 *1} = \frac{8 * 7}{2 *1} =2 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%262%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-2%29%212%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B6%212%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%21%7D%7B6%21%20%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%7D%7B2%20%2A1%7D%20%3D2%208)
When r = 3
![\left[\begin{array}{c}8&&3\end{array}\right] = \frac{8!}{(8-3)!3!} = \frac{8!}{5!3!} = \frac{8 * 7 * 6 * 5!}{5! *3* 2 *1} = \frac{8 * 7 * 6}{3 *2 *1} = 56](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%263%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-3%29%213%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B5%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%21%7D%7B5%21%20%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%7D%7B3%20%2A2%20%2A1%7D%20%3D%2056)
When r = 4
![\left[\begin{array}{c}8&&4\end{array}\right] = \frac{8!}{(8-4)!4!} = \frac{8!}{4!3!} = \frac{8 * 7 * 6 * 5 * 4!}{4! *4*3* 2 *1} = \frac{8 * 7 * 6*5}{4*3 *2 *1} = 70](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%264%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-4%29%214%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B4%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%20%2A%204%21%7D%7B4%21%20%2A4%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%2A5%7D%7B4%2A3%20%2A2%20%2A1%7D%20%3D%2070)
When r = 5
![\left[\begin{array}{c}8&&5\end{array}\right] = \frac{8!}{(8-5)!5!} = \frac{8!}{5!3!} = \frac{8 * 7 * 6 * 5!}{5! *3* 2 *1} = \frac{8 * 7 * 6}{3 *2 *1} = 56](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%265%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-5%29%215%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B5%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%21%7D%7B5%21%20%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%7D%7B3%20%2A2%20%2A1%7D%20%3D%2056)
When r = 6
![\left[\begin{array}{c}8&&6\end{array}\right] = \frac{8!}{(8-6)!6!} = \frac{8!}{6!2!} = \frac{8 * 7 * 6!}{6! * 2 *1} = \frac{8 * 7}{2 *1} = 28](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-6%29%216%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B6%212%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%21%7D%7B6%21%20%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%7D%7B2%20%2A1%7D%20%3D%2028)
When r = 7
![\left[\begin{array}{c}8&&7\end{array}\right] = \frac{8!}{(8-7)!7!} = \frac{8!}{7!1!} = \frac{8 * 7!}{7! * 1} = \frac{8}{1} = 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%267%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-7%29%217%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B7%211%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%21%7D%7B7%21%20%2A%201%7D%20%3D%20%5Cfrac%7B8%7D%7B1%7D%20%3D%208)
When r = 8
![\left[\begin{array}{c}8&&8\end{array}\right] = \frac{8!}{(8-8)!8!} = \frac{8!}{8!0!} = 1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%268%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-8%29%218%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B8%210%21%7D%20%3D%201)
The full sequence is: 1,8,28,56,70,56,28,8,1
And the number of terms is 9
Answer:
The answer is 100% without a doubt A
Step-by-step explanation:
Answer:
C. 31
Step-by-step explanation:
3000 there are 3-4 errors
If we first divide 24,000 by 3,000, will get 8
then since there a error for each 3,000 books, we do 8 x 4 = 32 and 8 x 3 = 24
32 (8 x 4) the max amount of printing errors
24 (8 x 3) the minimum amount of printing errors
So we should expect 24-32 printing errors
Only answer between the numbers is c. 31
Answer:
x = (-28)/11
Step-by-step explanation:
Solve for x:
(55 x)/24 + 35/6 = 0
Put each term in (55 x)/24 + 35/6 over the common denominator 24: (55 x)/24 + 35/6 = (55 x)/24 + 140/24:
(55 x)/24 + 140/24 = 0
(55 x)/24 + 140/24 = (55 x + 140)/24:
(55 x + 140)/24 = 0
Multiply both sides of (55 x + 140)/24 = 0 by 24:
(24 (55 x + 140))/24 = 24×0
(24 (55 x + 140))/24 = 24/24×(55 x + 140) = 55 x + 140:
55 x + 140 = 24×0
0×24 = 0:
55 x + 140 = 0
Subtract 140 from both sides:
55 x + (140 - 140) = -140
140 - 140 = 0:
55 x = -140
Divide both sides of 55 x = -140 by 55:
(55 x)/55 = (-140)/55
55/55 = 1:
x = (-140)/55
The gcd of 140 and 55 is 5, so (-140)/55 = (-(5×28))/(5×11) = 5/5×(-28)/11 = (-28)/11:
Answer: x = (-28)/11
Answer:
Perimeter = 32m
Area = 76.8m²
Step-by-step explanation:
Question:
On a farm they want to put an octagonal fence to keep the geese at night. They have already placed two of the sides and used 8 meters of fence. If we know that the apothem is 4.8 meters, what will be its perimeter? And your area?
Octagonal polygon is a polygon with 8sides.
Two sides of fence = 8m
One side of fence = 8/2 = 4m
Each sides = 4m
Apothem = 4.8m
Let's look at the steps that will enable us solve this question.
The area of a regular polygon is calculated as:
Area = ½ap
where a = the apothem of the polygon
p= the perimeter of the polygon.
Apothem is the distance between the centre of the polygon and the base of the polygon.
The perimeter (p) = The sum of all sides of the octagon
p = (4 + 4 + 4 + 4 + 4 + 4+ 4+ 4 )
p = 4(8)
perimeter (p) = 32m
Area = ½ ×a ×p = ½ × 4.8m × 32
Area = 153.6/2
Area = 76.8m²