Answer:
The answer is A.
Step-by-step explanation:
Answer:
None
Step-by-step explanation:
They are the same number
Answer:
D
Step-by-step explanation:
our basic Pythagorean identity is cos²(x) + sin²(x) = 1
we can derive the 2 other using the listed above.
1. (cos²(x) + sin²(x))/cos²(x) = 1/cos²(x)
1 + tan²(x) = sec²(x)
2.(cos²(x) + sin²(x))/sin²(x) = 1/sin²(x)
cot²(x) + 1 = csc²(x)
A. sin^2 theta -1= cos^2 theta
this is false
cos²(x) + sin²(x) = 1
isolating cos²(x)
cos²(x) = 1-sin²(x), not equal to sin²(x)-1
B. Sec^2 theta-tan^2 theta= -1
1 + tan²(x) = sec²(x)
sec²(x)-tan(x) = 1, not -1
false
C. -cos^2 theta-1= sin^2
cos²(x) + sin²(x) = 1
sin²(x) = 1-cos²(x), our 1 is positive not negative, so false
D. Cot^2 theta - csc^2 theta=-1
cot²(x) + 1 = csc²(x)
isolating 1
1 = csc²(x) - cot²(x)
multiplying both sides by -1
-1 = cot²(x) - csc²(x)
TRUE
<span>20-9x=11
-9x=11-20
-9x= -9
x= -9/(-9)
x=1
4(2x+1)=8
2x+1=8/4
2x+1=2
2x=2-1
2x=1
x=1/2
x=0.5
5(2x+5)=-15
2x+5= -15/5
2x+5= -3
2x= -3-5
2x= -8
x= -8/2
x=-4
3(8x+1)=-21
8x+1= -21/3
8x+1= -7
8x= -7-1
8x =-8
x= -8/8
x= -1
</span>
Answer:
It’s B
Step-by-step explanation: