The image as shown here can here can be used to describe charging by induction.
<h3>What is a charge?</h3>
A charge may be positive or negative. One of the methods of transferring a charge is by induction.
In this case, an objects induces an opposite charge on a material. The image as shown here can here can be used to describe charging by induction.
Learn more about charging by induction:brainly.com/question/10254645
#SPJ4
Answer:
14,700 N
Explanation:
The hyppo is standing completely submerged on the bottom of the lake. Since it is still, it means that the net force acting on it is zero: so, the weight of the hyppo (W), pushing downward, is balanced by the upward normal force, N:
(1)
the weight of the hyppo is

where m is the hyppo's mass and g is the gravitational acceleration; therefore, solving eq.(1) for N, we find

I tried to look it up but it was saying that the super climate later broke apart in the sediments have been moving into their current positions ever since
Answer:
Option (2)
Explanation:
From the figure attached,
Horizontal component, 
![A_x=12[\text{Sin}(37)]](https://tex.z-dn.net/?f=A_x%3D12%5B%5Ctext%7BSin%7D%2837%29%5D)
= 7.22 m
Vertical component, ![A_y=A[\text{Cos}(37)]](https://tex.z-dn.net/?f=A_y%3DA%5B%5Ctext%7BCos%7D%2837%29%5D)
= 9.58 m
Similarly, Horizontal component of vector C,
= C[Cos(60)]
= 6[Cos(60)]
= 
= 3 m
![C_y=6[\text{Sin}(60)]](https://tex.z-dn.net/?f=C_y%3D6%5B%5Ctext%7BSin%7D%2860%29%5D)
= 5.20 m
Resultant Horizontal component of the vectors A + C,
m
= 4.38 m
Now magnitude of the resultant will be,
From ΔOBC,

= 
= 
= 6.1 m
Direction of the resultant will be towards vector A.
tan(∠COB) = 
= 
= 
m∠COB = 
= 46°
Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.
Option (2) will be the answer.
The radius of the sphere in meters is ,r =
Think about the angle the ground and the shadow make. Since the sun's beams are parallel, the angle created by the stick's shadow is also equal. Since the stick is 1 m high and its shadow is 2 m long, we know that the stick's angle is arctan 1/2. Therefore, by thinking of a right-angled triangle,
r/10 = tan [arctan(1/2)] = tan (1/2)
Since, tan (θ/2) = 1-cos(θ) / sin(θ)
we find that,
r/10 = 
Hence, r = 
So, the radius of the sphere in meters is ,r =
Learn more about radius (r) of the sphere here;
brainly.com/question/14100787
#SPJ4