The first thing you should know for this case is that work is defined as the product of force by the distance traveled in the direction of force.
We have then:
W = Fd
The distance varies, so we must integrate:
from 0 to 20:
W = ∫F (x) dx
W = ∫32xdx
W = 32∫xdx
W = 32 (x ^ 2/2) = (16) (20 ^ 2) = 6400 ft * lbs
answer:
6400 ft * lbs is work done pulling the rope up 20 ft
Explanation:
Below is an attachment containing the solution.
Answer:
By applying a force of one Newton, one can hold a body of mass of 102 gram.
Explanation:
- Force is the pull or push of an object. It can be mathematically measured as, F= m* g.
where, F= force in newton
m= mass in kg
g= acceleration due to gravity (
)
F= m* 9.8
or, m=
= 0.102 kg
or, m= 102 gram.
- Hence, 102 gram mass can be hold by one Newton force.
Answer:
<em>The rebound speed of the mass 2m is v/2</em>
Explanation:
I will designate the two masses as body A and body B.
mass of body A = m
mass of body B = 2m
velocity of body A = v
velocity of body B = -v since they both move in opposite direction
final speed of mass A = 2v
final speed of body B = ?
The equation of conservation of momentum for this system is
mv - 2mv = -2mv + x
where x is the final momentum of the mass B
x = mv - 2mv + 2mv
x = mv
to get the speed, we divide the momentum by the mass of mass B
x/2m = v = mv/2m
speed of mass B = <em>v/2</em>
Yes, It probably true. Because the Luster it has a nonmetal, is going to be found in periodic table.
Hope it helped you.
-Charlie