Answer:
Option (1) Br– is the catalyst, and the reaction follows a faster pathway with Br– than without
Explanation:
Let us consider the equation below:
Step 1:
H2O2(aq) + Br–(aq) → H2O(l) + BrO–(aq)
Step 2:
BrO–(aq) + H2O2(aq) → H2O(l) + O2(g) + Br–(aq)
From the above equation, we can see that Br– is unchanged.
This implies that Br– is the catalyst as catalyst does not take part in a chemical reaction but they create an alternate pathway to lower the activation energy in order for the reaction to proceed at a much faster rate to arrive at the products.
<span>The right answer is D. In a situation where the sound wave reaches the ear and the reflected wave reaches the ear less than 0.1 seconds later, the individual would not be able to hear an echo. There needs to a far more significant delay between the sound and the reflection of said sound reaching the listener's ear for the echo effect to become apparent.</span>
Answer:
(x + 2)(x + 2)
Explanation:
You need 2 numbers that times to give 4 and add to give 4. So 2 and 2.
Answer:
Ethylene diamine will bond to the Central metal via a lone pairs of electrons on nitrogen
Explanation:
Complexes are formed by coordinate bond formation. Before a coordinate bond is formed, one of the species must have a lone lair of electrons available for donation into empty orbitals on the central metal.
Ethylene diammine contains nitrogen which has a lone pair of electrons. The two lone pairs on the two nitrogen atoms can bond with the central metal. This makes ethylene diammine a bidentate ligand (two bonding atoms).