Answer:
a
The radial acceleration is 
b
The horizontal Tension is 
The vertical Tension is 
Explanation:
The diagram illustrating this is shown on the first uploaded
From the question we are told that
The length of the string is 
The mass of the bob is 
The angle made by the string is 
The centripetal force acting on the bob is mathematically represented as

Now From the diagram we see that this force is equivalent to
where T is the tension on the rope and v is the linear velocity
So

Now the downward normal force acting on the bob is mathematically represented as

So

=> 
=> 
The centripetal acceleration which the same as the radial acceleration of the bob is mathematically represented as

=> 
substituting values


The horizontal component is mathematically represented as

substituting value

The vertical component of tension is

substituting value

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is

substituting value
![T = [(0.3294) i + (3.3712)j ] \ N](https://tex.z-dn.net/?f=T%20%20%3D%20%5B%280.3294%29%20i%20%20%2B%20%283.3712%29j%20%5D%20%5C%20%20N)
Answer:
The correct answer is A. Vibration.
Explanation:
Mechanical waves is formed by the oscillation of matter and therefore transfer energy from one medium to the other. Unlike electromagnetic waves, mechanical waves need some medium to propagate. It requires an initial energy input and thus carries this energy when it propagates. There are three types of mechanical waves namely transverse waves, longitudinal waves and surface waves. Examples of such waves are sound waves, water waves and seismic waves.
Answer:
The value is 
Explanation:
From the question we are told that
The initial speed is 
Generally the total energy possessed by the space probe when on earth is mathematically represented as

Here
is the kinetic energy of the space probe due to its initial speed which is mathematically represented as
=>
=> 
And
is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

Here
is the escape velocity from earth which has a value 
=> 
=> 
Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

Generally from the law energy conservation we have that
So

=> 
=> 
=> 
Kinematics : Study of motion
Fluid kinematics : study of how fluid flows and how to describe its motion.
There are two ways to describe fluid motion
one is Eulerian, where the variations are described at all fixed stations as a function of time.
the other is Lagrangian, in which one follows all fluid particles and describes the variations around each fluid particle along its trajectory.
<u>DIFFRENCE BETWEEN LAGRANGIAN AND EULERIAN:</u>
1.Both Lagrangian and Eulerian describes time variation.
2. Eulerian describes the rate of change in one point of space
Lagrangian descries rate of change of a property of material system.
To know more about the Lagrangian and Eulerian :\brainly.com/question/14944792
#SPJ4
Answer: 1018.26 m/s
Explanation:
Approaching the orbit of the Moon around the Earth to a circular orbit (or circular path), we can use the equation of the speed of an object with uniform circular motion:
Where:
is the speed of travel of the Moon around the Earth
is the Gravitational Constant
is the mass of the Earth
is the distance from the center of the Earth to the center of the Moon
Solving:
This is the speed of travel of the Moon around the Earth