Given Information:
Mass of sock = 0.23 kg
Stretched length of sock = x = 2.54 cm = 0.0254 m
Required Information:
Spring constant = k = ?
Answer:
Spring constant = k = 88.82 N/m
Explanation:
We know from the Hook's law that
F = kx
Where k is spring constant, F is the applied force and x is length of sock being stretched.
k = F/x
Where F is given by
F = mg
F = 0.23*9.81
F = 2.256 N
So the spring constant is
k = 2.256/0.0254
k = 88.82 N/m
Therefore, the spring constant of the sock is 88.82 N/m
The kinetic energy will rise once the body comes back down. As it goes up, the potential energy increases while the kinetic energy decreases. Once the body is at its maximum height, the potential energy is at it’s highest. When it starts falling, it will gain kinetic energy and lose potential energy.
They are the standard system used by scientists worldwide, and
officially by almost all nations of the world. So if you describe a
measurement in terms of SI units, there's less chance that you'll
need to explain the measurement to anyone who reads it ...
most scientists and common people worldwide will understand
what your number means.
Answer:
The objects were 1.8m apart.
Explanation:
We will start stating the Coulomb's Law. It says that:

Where F_e is the electric force between the objects, q_1 and q_2 are the magnitude of the charge of the objects, r is the distance between them and K is the Coulomb's constant (
in vacuum). Solving for the distance r we have:

Plugging the given values into this equation, we obtain:

In words, the two charged objects were 1.8m apart.
Frequency represents the number of complete oscillations in one second. it is measured in Hertz (Hz). Electromagnetic waves are waves which do not require a material media for transmission. They travel with a speed of light.
The speed (m/s) of a wave is given by frequency (Hz) × Wavelength (m)
Speed is 300,000 km/sec or 300,000,000 m/s and the wavelength is 300,000 km or 300,000,000 m.
Frequency = speed÷ wavelength
= 300000000 ÷ 300000000 = 1
Therefore, the frequency of the wave is 1Hz