Answer:
Answer:
Explanation:
Given that
K=8.98755×10^9Nm²/C²
Q=0.00011C
Radius of the sphere = 5.2m
g=9.8m/s²
1. The electric field inside a conductor is zero
εΦ=qenc
εEA=qenc
net charge qenc is the algebraic sum of all the enclosed positive and negative charges, and it can be positive, negative, or zero
This surface encloses no charge, and thus qenc=0. Gauss’ law.
Since it is inside the conductor
E=0N/C
2. Since the entire charge us inside the surface, then the electric field at a distance r (5.2m) away form the surface is given as
F=kq1/r²
F=kQ/r²
F=8.98755E9×0.00011/5.2²
F=36561.78N/C
The electric field at the surface of the conductor is 36561N/C
Since the charge is positive the it is outward field
3. Given that a test charge is at 12.6m away,
Then Electric field is given as,
E=kQ/r²
E=8.98755E9 ×0.00011/12.6²
E=6227.34N/C
The statement is false. Vectors are used to solve projectile motion problems because they allow the analysis of one direction at a time for two-dimensional motion. Scalar quantities can be used to analyze linear motion problem, but not projectile motion.
Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
Solution :
Given :
Mass attached to the spring = 4 kg
Mass dropped = 6 kg
Force constant = 100 N/m
Initial amplitude = 2 m
Therefore,
a). 

= 10 m/s
Final velocity, v at equilibrium position, v = 5 m/s
Now, 
A' = amplitude = 1.4142 m
b). 
m' = 2m
Hence, 
c). 

Therefore, factor 
Thus, the energy will change half times as the result of the collision.