Answer:
√(137)
Step-by-step explanation:
First, you will need to find the other side length.....then you can use the Pythagorean Theorem to find the diagonal:
L x W = 44
4 x W = 44
W =11
Now the Pythag, Theorem:
diagonal^2 = 4^2 + 11^2
d^2 = 16+121
d^2 = 137
d = √(137)
Can you show us the question?
Answer:
The turns of a graph is represented by the number of maximum or minimum that the function has.
If we differenciate f(x) we get:
f'(x)=4x^3+6x
f'(x)=2x(2x^2 + 3)
Therefore f'(x) =0, when x=0. Given that negative roots are not defined.
Therefore, the number of turns will be given by the number of solutions of f'(x) which is 1.
Attached you find the graph of the function which confirms the number of turns.
If the function had other solutions, the maximum number of turns it could have is 3! because f'(x) is a third degree polynomial, therefore it can't have more than 3 solutions!
Answer:
The interest on the savings account is $46.47
Step-by-step explanation:
Here, we want to know the interest earned on the savings account.
The difference between the new and previous balance will be; 12,098.12 - 9,053.20 = $3,044.92
The difference between amount deposited and amount withdrawn is 3,298.45 - 300 = 2,998.45
This is the amount that is supposed to be on the account without interest
So the interest earned would be; 3044.92 - 2,998.45 = $46.47
Answer:

f(x) = 4 when x is 8
Step-by-step explanation:
Domain is the set of x values that make the function defined. Allowed x values for the function (mapping).
The Range is the set of y values that make the function defined. Allowed y values for the function (mapping).
- Whenever we need to find f(a), suppose, then we look for "a" in the domain and see its corresponding value mapping in the range.
- Whenever we will be given a value for f(x) = a, suppose, and we have to find "x", we look at the value a in the range and find corresponding x value in the domain.
Firstly, we need f(4), so we look for "4" in domain and see which number it corresponds to in range.
That is 
Thus,

Next,
We want "x" value that gives us a "y" value of 4. We look for "4" in the range and see which value it corresponds to. That is "8". So,
f(8) = 4