Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.
Three types of spacesuits exist for different purposes: IVA (intravehicular activity), EVA (extravehicular activity), and IEVA (intra/extravehicular activity). IVA suits are meant to be worn inside a pressurized spacecraft, and are therefore lighter and more comfortable. IEVA suits are meant for use inside and outside the spacecraft, such as the Gemini G4C suit. They include more protection from the harsh conditions of space, such as protection from micrometeorites and extreme temperature change. EVA suits, such as the EMU, are used outside spacecraft, for either planetary exploration or spacewalks. They must protect the wearer against all conditions of space, as well as provide mobility and functionality.
Answer:
bottle might burst
Explanation:
because liquid inside will expand and exert pressure on walls of the bottle.
Answer: I maybe wrong but i'm pretty sure its C) Kinetic energy
Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.