Answer:
51.96 m/s^-1
Explanation:
a) see the attachment
b) As we know the velocity of the projectile has two component, horizontal velocity v_ox. and vertical velocity v_oy as shown in the figure. At the highest point of the trajectory, the projectile has only horizontal velocity and vertical velocity is zero. Therefore at the highest point of the trajectory, the velocity of the projectile will be
v_ox=v_o*cosФ
=60*cos (30)
= 51.96 m/s^-1
Answer:
Explanation:
Given that,
Mass of ball m = 2kg
Ball traveling a radius of r1= 1m.
Speed of ball is Vb = 2m/s
Attached cord pulled down at a speed of Vr = 0.5m/s
Final speed V = 4m/s
Let find the transverse component of the final speed using
V² = Vr²+ Vθ²
4² = 0.5² + Vθ²
Vθ² = 4²—0.5²
Vθ² = 15.75
Vθ =√15.75
Vθ = 3.97 m/s.
Using the conservation of angular momentum,
(HA)1 = (HA)2
Mb • Vb • r1 = Mb • Vθ • r2
Mb cancels out
Vb • r1 = Vθ • r2
2 × 1 = 3.97 × r2
r2 = 2/3.97
r2 = 0.504m
The distance r2 to the hole for the ball to reach a maximum speed of 4m/s is 0.504m
The required time,
Using equation of motion
V = ∆r/t
Then,
t = ∆r/Vr
t = (r1—r2) / Vr
t = (1—0.504) / 0.5
t = 0.496/0.5
t = 0.992 second
Answer:
(a) a = 2.44 m/s²
(b) s = 63.24 m
Explanation:
(a)
We will use the second equation of motion here:

where,
s = distance covered = 47 m
vi = initial speed = 0 m/s
t = time taken = 6.2 s
a = acceleration = ?
Therefore,

<u>a = 2.44 m/s²</u>
<u></u>
(b)
Now, we will again use the second equation of motion for the complete length of the inclined plane:

where,
s = distance covered = ?
vi = initial speed = 0 m/s
t = time taken = 7.2 s
a = acceleration = 2.44 m/s²
Therefore,

<u>s = 63.24 m</u>