1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
13

Three positive charges A, B, and C, and a negative charge D are placed in a line as shown in the diagram. All four charges are o

f equal magnitude. The distances between A and B, B and C, and C and D are equal. (ref: p.553-561)
a. Which charge experiences the greatest net force? Which charge experiences the smallest net force?

b. Find the ratio of the greatest to the smallest net force.

I really only need help with part b. I just don't understand what the question means when it says '"ratio of greatest to smallest net force" and how I am suppose to show that. Help is much appreciated. : )

Physics
1 answer:
Irina18 [472]3 years ago
5 0

Answer:

a. q_C experiences the greatest net force and q_B experiences the smallest net force

b. Ratio of the greatest to the smallest net force= 9

Explanation:

<u>Electrostatic Forces </u>

Two point-charges q1 and q2, separated a distance d, exert on each other an electrostatic force of magnitude

\displaystyle F=K\frac{q_1q_2}{d^2}

If the charges have the same sign, they repel each other, for different signed charges, they attract. That gives us the direction of each force in the space.

Let's assume all the charges of the problem have a magnitude q, and between two consecutive charges, the distance is d. The proposed layout is shown it the image.

a.

The net force on qA is the sum of those exerted by qB, qC, and qD. But note qB and qC repel qA and qD attracts it, so the total force on qA is

F_{TA}=-F_B-F_C+F_D

Computing the individual forces we have

\displaystyle F_B=\frac{K\ q_A\ q_B}{d^2}=K\ \frac{q^2}{d^2}

\displaystyle F_C=\frac{K\ q_A\ q_C}{(2d)^2}=\frac{1}{4}\ \ \frac{K\ q^2}{d^2}

\displaystyle F_D=\frac{K\ q_A\ q_D}{(3d)^2}=\frac{1}{9}\ \ \frac{K\ q^2}{d^2}

The total force on qA is:

\displaystyle F_{TA}=\frac{K\ q^2}{d^2}(-1-\frac{1}{4}+\frac{1}{9})

\displaystyle F_{TA}=-\frac{41}{36}\ \frac{K\ q^2}{d^2}

\displaystyle |F_{TA}|=\frac{41}{36}\ \frac{K\ q^2}{d^2}

Charge qA repels qB to the right, qC repels qB to the left, and qD attracts qB to the right, thus

\displaystyle F_{TB}=F_A-F_C+F_D

\displaystyle F_{TB}=\frac{K\ q^2}{d^2}-\frac{K\ q^2}{d^2}+\frac{K\ q^2}{(2d)^2}

\displaystyle F_{TB}=\frac{1}{4}\ \frac{K\ q^2}{d^2}

\displaystyle |F_{TB}|=\frac{1}{4}\ \frac{K\ q^2}{d^2}

Charges qA and qb repel qC to the right, and qD attracts qC to the right, thus

\displaystyle F_{TC}=F_A+F_B+F_D

\displaystyle F_{TC}=\frac{K\ q^2}{(2d)^2}+\frac{K\ q^2}{d^2}+\frac{K\ q^2}{d^2}

\displaystyle F_{TC}=\frac{9}{4}\ \frac{K\ q^2}{d^2}

\displaystyle |F_{TC}|=\frac{9}{4}\ \frac{K\ q^2}{d^2}

Charge qA and qB attract qD to the left, and qC atracts qD to the left, thus

\displaystyle F_{TD}=-F_A-F_B-F_C

\displaystyle F_{TD}=-\frac{K\ q2}{(3d)^2}-\frac{K\ q2}{(2d)^2}-\frac{K\ q2}{d^2}

\displaystyle F_{TD}=-\frac{49}{36}\ \frac{K\ q^2}{d^2}

\displaystyle |F_{TD}|=\frac{49}{36}\ \frac{K\ q^2}{d^2}

Comparing the relative values of all the forces

\displaystyle |F_{TC}|>|F_{TD}|>|F_{TA}|>|F_{TB}|

This means that qc experiences the greatest net force and qB experiences the smallest net force

b.

The ratio of the greatest to the smallest forces is

\displaystyle \frac{|F_{TC}|}{|F_{TB}|}=\frac{\frac{9}{4}}{\frac{1}{4}}=9

You might be interested in
What charge do electrons have?<br> A. no charge<br> B. a positive charge<br> C. a negative charge
Mandarinka [93]
Electrons have a negative charge.
5 0
2 years ago
Your boss asks you to design a room that can be as soundproof as possible and provides you with three samples of material. The o
Ierofanga [76]
<span>C. Sample C would be best, because the percentage of the energy
in an incident wave that remains in a reflected wave from this material
is the smallest.

The coefficient of absorption is the percentage of incident sound
that's absorbed.  So the highest coefficient of absorption results in
the smallest </span><span>percentage of the energy in an incident wave that remains.
That's what you want. </span>
6 0
3 years ago
An unknown fluid flows at a speed of 31 m/s. Suppose the fluid has a mass of 47 kg runs at this speed. What is the fluid’s kinet
Leya [2.2K]

Answer:

22583.5J

Explanation:

KE=1/2 mv^2

=1/2*47Kg*(31m/s^2)

=23.5Kg * 961m/s^2

=22583.5J

7 0
2 years ago
8. An effort force of 15 Newtons is applied to an ideal pulley system to lift up a 16 Newton object. If the effort force is exer
Sonbull [250]

Answer:

the distance that the object is raised above its initial position is 5.625 m.​

Explanation:

Given;

applied effort, E = 15 N

load lifted by the ideal pulley system, L = 16 N

distance moved by the effort, d₁ = 6 m

let the distance moved by the object = d₂

For an ideal machine, the mechanical advantage is equal to the velocity ratio of the machine.

M.A = V.R

M.A = \frac{Load}{Effort} = \frac{L}{E} \\\\V.R = \frac{disatnce \ moved \  by \ the \ effort}{disatnce \ moved \  by \ the \ load} = \frac{d_1}{d_2} \\\\For \ ideal \ machine; \ M.A = V.R\\\\\frac{L}{E} = \frac{d_1}{d_2} \\\\d_2 = \frac{E \times d_1}{L} \\\\d_2 = \frac{15 \times 6}{16} \\\\d_2 = 5.625 \ m

Therefore, the distance that the object is raised above its initial position is 5.625 m.​

3 0
3 years ago
Part B
Katena32 [7]

Answer:

While slavery was the major issue separating the North and South, it was not slavery itself that sparked the conflict. The South wanted to secede from the Union, and the North refused. While President Abraham Lincoln personally opposed slavery, he recognized that it was legal under the U.S. Constitution at the time. He also recognized that few in the North were ready to go to war to free the slaves. For Lincoln and the northern majority, preservation of the Union was the foremost goal.

4 0
3 years ago
Other questions:
  • What can parents do if they find a mistake in the student records?      A. They can’t do anything B. Make a correction themselve
    11·2 answers
  • How do you calculate acceleration
    5·2 answers
  • A series RL circuit contains two resistors and two inductors. The resistors are 33 Ω and 47 Ω. The inductors have inductive reac
    11·1 answer
  • On the surface of Earth, a spacecraft has a mass of 2.00 x 104 kilograms. What is the mass of the spacecraft at a distance of on
    15·1 answer
  • Unlike acceleration and velocity, speed is NOT a quantity that accounts for..
    14·2 answers
  • A 0.20 kg mass is oscillating at a small angle from a light string with a period of 0.78 s.
    13·2 answers
  • Determine the force of gravitational attraction between the Earth and the moon. Their masses are 5.98 x 1024 kg and 7.26 x 1022
    7·1 answer
  • A loaded wagon of mass 10,000 kg moving with a speed of 15 m/s strikes a stationary wagon of the same mass making a perfect inel
    8·1 answer
  • ( Basic physics science question)
    9·1 answer
  • The horizontal surface on which the block of mass 2.2 kg slides is frictionless. The force of 27 N acts on the block in a horizo
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!