Okay. I will list all the relatively prime numbers up to 331.
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101, 103,107,109,113,127,131,137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331.
Okay, so look at this list and see which match up.
For A. 102 and 312. Neither of these numbers are relatively prime.
For B. 10 and 45. Neither of these are relatively prime.
For C. 3 and 51. 3 is a relatively prime number, 51 is not.
For D. 35 and 72. Neither of these are relatively prime numbers.
But the answer would be D. because to get a relatively prime pair of numbers you have to have both of them not be divisible by the same number. 102 and 312 can be divided 2, so that's not the answer. 10 and 45 can be divided by 5, so that is incorrect. 3 and 51 can be divided by 3, so that is also incorrect. 35 and 72 cannot be divided by the same numbers.
So, the answer is D. 35 and 72.
Answer:
a) The probability that the airline will lose no bags next monday is 0.1108
b) The probability that the airline will lose 0,1, or 2 bags next Monday is 0.6227
c) I would recommend taking a Poisson model with mean 4.4 instead of a Poisson model with mean 2.2
Step-by-step explanation:
The probability mass function of X, for which we denote the amount of bags lost next monday is given by this formula

a)

The probability that the airline will lose no bags next monday is 0.1108.
b) Note that
. And

Therefore, the probability that the airline will lose 0,1, or 2 bags next Monday is 0.6227.
c) If the double of flights are taken, then you at least should expect to loose a similar proportion in bags, because you will have more chances for a bag to be lost. WIth this in mind, we can correctly think that the average amount of bags that will be lost each day will double. Thus, i would double the mean of the Poisson model, in other words, i would take a Poisson model with mean 4.4, instead of 2.2.