The force equation can easily prove this. F=ma. This states that the force on an object is equal to mass times acceleration. If the mass stays the same and the velocity of the cars increases than that means there is a larger force. This is because in both cases the cars are stopping in almost an instant and the times of the crashes are theoretically identical. Acceleration is the change in velocity over time. If the velocity is higher with the same amount of time than that means there is a higher acceleration. If you plug a higher acceleration into the force equation then you wind up with a higher force and in turn a more damaging collision.
<span />
<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
<em><u>A</u></em><em><u>. </u></em><em><u>R</u></em><em><u>E</u></em><em><u>D</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u>S</u></em><em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>N</u></em><em><u>O</u></em><em><u>T</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>L</u></em><em><u>I</u></em><em><u>G</u></em><em><u>H</u></em><em><u>T</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u> </u></em><em><u>B</u></em><em><u>E</u></em><em><u>C</u></em><em><u>A</u></em><em><u>U</u></em><em><u>S</u></em><em><u>E</u></em><em><u> </u></em><em><u>THE</u></em>RE<em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>N</u></em><em><u>O</u></em><em><u>T</u></em><em><u> </u></em><em><u>RED</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u>.</u></em>
<em><u>A</u></em><em><u>L</u></em><em><u>S</u></em><em><u>O</u></em><em><u> </u></em><em><u>I</u></em><em><u>F</u></em><em><u> </u></em><em><u>Y</u></em><em><u>O</u></em><em><u>U</u></em><em><u> </u></em><em><u>D</u></em><em><u>O</u></em><em><u>N</u></em><em><u>T</u></em><em><u> </u></em><em><u>B</u></em><em><u>E</u></em><em><u>L</u></em><em><u>I</u></em><em><u>E</u></em><em><u>V</u></em><em><u>E</u></em><em><u> </u></em><em><u>S</u></em><em><u>E</u></em><em><u>A</u></em><em><u>R</u></em><em><u>C</u></em><em><u>H</u></em><em><u> </u></em><em><u>I</u></em><em><u>T</u></em><em><u> </u></em><em><u>F</u></em><em><u>R</u></em><em><u>O</u></em><em><u>M</u></em><em><u> </u></em><em><u>G</u></em><em><u>O</u></em><em><u>O</u></em><em><u>G</u></em><em><u>L</u></em><em><u>E</u></em>
Answer: Due that we don't know the initial speed after hitting the ball, we are going to accept that the ball goes up for half of the time and then falls during other half part, that is 3.0 seconds each. Then we know that ball's movement is ruled by the acceleration of gravity formula, as follows: H = Vi * T + 1/2 * g * T^2 V = Vi + g * T where: H is height, Vi initial speed, g gravity acceleration and T time When we only consider the second half of the trajectory, we have that initial speed at the top of that movement is zero, because ball goes up till top, where stops and starts to go down, so : H = 0 * 3 + 1/2 * 32 * 3^2 = 144 ft. So the height of the pop-up is 144 feet.