1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
3 years ago
6

Please help me, i beg you.

Physics
1 answer:
natita [175]3 years ago
8 0

Answer:

c

Explanation:

A spherical solid metal made up of Nickel, Iron and small amount of sulfur, silicon and oxygen.

you are welcome

You might be interested in
A power plant produces 1000 MW to supply a city 40 km away. Current flows from the power plant on a single wire of resistance 0.
nikitadnepr [17]

Answer:

Current = 8696 A

Fraction of power lost = \dfrac{80}{529} = 0.151

Explanation:

Electric power is given by

P=IV

where I is the current and V is the voltage.

I=\dfrac{P}{V}

Using values from the question,

I=\dfrac{1000\times10^6 \text{ W}}{115\times10^3\text{ V}} = 8696 \text{ A}

The power loss is given by

P_\text{loss} = I^2R

where R is the resistance of the wire. From the question, the wire has a resistance of 0.050\Omega per km. Since resistance is proportional to length, the resistance of the wire is

R = 0.050\times40 = 2\Omega

Hence,

P_\text{loss} = \left(\dfrac{200000}{23}\right)^2\times2

The fraction lost = \dfrac{P_\text{loss}}{P}=\left(\dfrac{200000}{23}\right)^2\times2\div (1000\times10^6)=\dfrac{80}{529}=0.151

3 0
3 years ago
As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
Hunter-Best [27]
Periodic time is the time taken for one complete oscillation by a body in circular motion. In this case the merry-go round takes 2 minutes to cover 15 complete oscillations. 2 Minutes = 120 seconds
Hence, 15 oscillations takes 120 secs
         thus 1 oscillation takes 120/15 = 8 seconds
therefore the period of the merry-go-round = 8 seconds
8 0
3 years ago
Read 2 more answers
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
3 years ago
When cars are equipped with flexible bumpers, they will bounce off each other during low-speed collisions, thus causing less dam
Len [333]

Answer:

Explanation:

Given that,

Mass of the heavier car m_1 = 1750 kg

Mass of the lighter car m_2 = 1350 kg

The speed of the lighter car just after collision can be represented as follows

m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\\v_2=\frac{m_1u_1+m_2u_2-m_1v_1}{m_2}

v_2=\frac{(1850)(1.4)+(1450)(-1.10)-(1850)(0.250)}{1450} \\\\=\frac{2590+(-1595)-(462.5)}{1450} \\\\=\frac{2590-1595-462.5}{1450} \\\\=\frac{532.5}{1450}\\\\=0.367m/s

b) the change in the combined kinetic energy of the two-car system during this collision

\Delta K.E=(\frac{1}{2} m_1v_1^2+\frac{1}{2} m_2v_2^2)-(\frac{1}{2} m_1u_1^2+\frac{1}{2} m_2u_2^2)\\\\=\frac{1}{2} (m_1(v_1^2-u_1^2)+m_2(v_2^2-u_2^2))

substitute the value in the equation above

=\frac{1}{2} (1850((0.250)^2-(1.4)^2)+(1450((0.3670)^2-(-1.10)^2)\\\\=\frac{1}{2}(11850(0.0625-1.96)+(1450(0.1347)-(1.21))\\\\= \frac{1}{2}(11850(-1.8975))+(1450(-1.0753))\\\\=\frac{1}{2} (-3510.375+(-1559.185)\\\\=\frac{1}{2} (-5069.56)\\\\=-2534.78J

Hence, the change in combine kinetic energy is -2534.78J

8 0
3 years ago
A heavy ball with a weight of 150 N is hung from the ceiling of a lecture hall on a 4.1-m-long rope. The ball is pulled to one s
AlladinOne [14]

Answer:

The tension in the rope is 262.88 N

Explanation:

Given:

Weight W = 150 N

Length of rope r = 4.1 m

Initial speed of ball v = 5.5 \frac{m}{s}

For finding the tension in the rope,

First find the mass of rod,

mg = 150                          ( g = 9.8 \frac{m}{s^{2} } )

  m = \frac{150}{9.8}

  m = 15.3 kg

Tension in the rope is,

  T = mg + \frac{mv^{2} }{r}

  T = 150 + \frac{15.3 \times (5.5)^{2} }{4.1}

  T = 262.88 N

Therefore, the tension in the rope is 262.88 N

7 0
3 years ago
Other questions:
  • What are the Rules of magnetism
    12·1 answer
  • How does the kinetic energy of an object affect the speed of an object?
    10·1 answer
  • A pulley with a radius of 3.0 cm and a rotational inertia of 4.5 x 10–3 kg∙m2 is suspended from the ceiling. A rope passes over
    14·1 answer
  • On a cold winter day, the flow of heat is from the outside in. A.True B.False
    5·2 answers
  • In fair weather, the ground may become charged such that there is an electric field just above the surface of the Earth, pointin
    7·1 answer
  • When doing a squat, how do you do it without getting hurt?
    5·2 answers
  • A child weighing 200 N is being held back in a swing by a horizontal force of 125 N, as shown in the image. What is the tension
    10·1 answer
  • Need thy help once again
    9·1 answer
  • Please hurry Describe why electric currents can be dangerous. ***what causes it to happen in the circuit not biology****
    12·2 answers
  • I am giving brainly to however answers first
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!