Answer:
A u = 0.36c B u = 0.961c
Explanation:
In special relativity the transformation of velocities is carried out using the Lorentz equations, if the movement in the x direction remains
u ’= (u-v) / (1- uv / c²)
Where u’ is the speed with respect to the mobile system, in this case the initial nucleus of uranium, u the speed with respect to the fixed system (the observer in the laboratory) and v the speed of the mobile system with respect to the laboratory
The data give is u ’= 0.43c and the initial core velocity v = 0.94c
Let's clear the speed with respect to the observer (u)
u’ (1- u v / c²) = u -v
u + u ’uv / c² = v - u’
u (1 + u ’v / c²) = v - u’
u = (v-u ’) / (1+ u’ v / c²)
Let's calculate
u = (0.94 c - 0.43c) / (1+ 0.43c 0.94 c / c²)
u = 0.51c / (1 + 0.4042)
u = 0.36c
We repeat the calculation for the other piece
In this case u ’= - 0.35c
We calculate
u = (0.94c + 0.35c) / (1 - 0.35c 0.94c / c²)
u = 1.29c / (1- 0.329)
u = 0.961c
Answer:
6 rad/s
Explanation:
In a spring the angular frequency is calculated as follows:

where
is the angular frequency,
is the mass of the object in this case
, and
is the constant of the spring.
To calculate the angular frequency, first we need to find the constant
which is calculated as follows:

Where
is the force:
, and
is the distance from the equilibrium position:
.
Thus the spring constant:


And now we do have everything necessary to calculate the angular frequency:


the angular frequency of the oscillation is 6 rad/s
Natural gas, water, coal, wind, nuclear power, solar, geothermal steam, agricultural waste and other biomass products are all used to produce electricity for California homes and businesses.
Answer:
(a)2.7 m/s
(b) 5.52 m/s
Explanation:
The total of the system would be conserved as no external force is acting on it.
Initial momentum = final momentum
⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)
⇒ 730 ×v = (4054.9 - 2081.2) =1973.7
⇒v=2.7 m/s
Thus, the resulting speed of the block is 2.7 m/s.
(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.

Thus, the speed of the bullet-block center of mass is 5.52 m/s.