Answer:
TRUE
Explanation:
We currently live in the digital age, where almost everything is digitized, including strategic information. Thus, each individual and especially corporations that have sensitive data must use protection mechanisms against cyber attacks. One of the measures most recommended by experts is encryption, which consists of a set of rules that aims to encode data information so that only the sender and the receiver can decipher it.
The electron's path in the magnetic field is a straight line when viewed from above.
In fact, the electron initially moves upward, while the magnetic field is directed horizontally. The electron experiences a force due to the magnetic field (the Lorentz force), whose direction is given by the right-hand rule:
- index finger --> initial direction of the electron (upward)
- middle finger --> direction of the magnetic field (horizontally, away from the observer)
- opposite direction to the thumb* --> direction of the force (horizontally, but perpendicular to the magnetic field, to the right)
This means that the Lorentz force makes the electron moving perpendicular to the magnetic field in the horizontal plane, and since the direction of the field is not changing, this force does not change its direction, so the electron moves in the same direction of the force in the horizontal plane (to the right), therefore following a straight line.
* the direction should be reversed because the charge is negative.
Answer:
T = 676 N
Explanation:
Given that: f = 65 Hz, L = 2.0 m, and ρ = 5.0 g
= 0.005 kg
A stationary wave that is set up in the string has a frequency of;
f = 

⇒ T = 4
M
Where: t is the tension in the wire, L is the length of the wire, f is the frequency of the waves produced by the wire and M is the mass per unit length of the wire.
But M = L × ρ = (2 × 0.005) = 0.01 kg/m
T = 4 ×
×
× 0.01
= 4 × 4 ×4225 × 0.01
= 676 N
Tension of the wire is 676 N.
Answer:
y = 12,000x + 40,000
Explanation:
A linear relationship that would model the mileage of the car in this example is:

where
y is the number of miles
x is the number of years
m is the number of miles driven per year
q is the number of miles already in the car at x=0
In this problem, we have
m = 12,000 (number of miles driven per year)
q = 40,000 (number of miles already in the car at x=0)
So substituting into the equation we get
