Answer:
When the metal wire in an incandescent lightbulb glows when the light is switched on and stops glowing when it is switched off, this is an example of resistance, which provides light and heat.
Explanation:
Answer:
The height of the bridge is 78.4 m.
Explanation:
Given;
time of the stone motion off the bridge, t = 4.0 s
acceleration due to gravity, g = 9.8 m/s²
The height of the bridge is given by;
h = ut + ¹/₂gt²
where;
u is the initial velocity of the stone, u = 0
h = ¹/₂gt²
h = ¹/₂(9.8)(4)²
h = 78.4 m
Therefore, the height of the bridge is 78.4 m.
Answer:
Speed of light
Explanation:
The famous Einstein's equation is:

where
E is the energy
m is the mass
is the speed of light
In this equation, Einstein summarized the following fact: mass can be converted into energy, and the amount of energy released in such a process is given by the equation.
An example of application of this equation is the nuclear fusion process. In a nuclear fusion, two lighter nuclei combine into a heavier nucleus. However, the mass of the heavier nucleus is slightly less than the sum of the masses of the two original nuclei: some of the mass of the original nuclei has been converted into energy, accorging to the previous equation.
Answer:

Explanation:
As we know that when electron moved in electric field then work done by electric field must be equal to the change in kinetic energy of the electron
So here we have to find the work done by electric field on moving electron
So we have



now the distance moved by the electron is given as

so we have



now we have to convert it into keV units
so we have


Choices A, B, and D are false statements.
I think choice-C is trying to say the right thing, but it
might have gotten copied incorrectly.
Electric fields and electric forces both increase as the distance
decreases, and decrease as the distance increases.